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ABSTRACT
Systemic hypertension is a chronic disorder of cardiovascular 
system characterized by an increase in systemic vascular 
resistance (SVR). Although the level of blood pressure is a 
product of SVR and cardiac output, it is the former which is 
responsible for chronic blood pressure elevation. A number of 
biochemical, biophysical, and neuro-humoral factors participate 
in the maintenance of SVR. Whatever the underlying molecular 
mechanism may be for elevated SVR, the end consequence 
is endothelial dysfunction. Normal endothelium promotes 
vasodilation and prevention of local thrombotic phenomena 
whereas abnormal endothelium promotes vasoconstriction 
and thrombotic processes. One of the basic pathophysiological 
aberrations in hypertension is abnormal endothelial function. 
A number of blood pressure lowering strategies (life-style 
modification and or anti-hypertensive drugs) result in revers-
ing endothelial dysfunction in hypertension. Thus, endothelial 
function is considered both as a mechanism and a therapeutic 
target in hypertension. This review summarizes the physiology 
and pathophysiology of endothelium in hypertension.
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INTRODUCTION

Endothelial cells form the innermost monolayer of the 
vascular wall in arteries, veins, and capillaries. The 
endothelium functions both as an endocrine organ, 
expressing receptors for cellular and hormonal commu-
nication, and as a paracrine organ, producing vasoactive, 
inflammatory, vasculoprotective, angiogenic, thrombotic, 

and antithrombotic molecules.1,2 It exists in persistent 
homeostasis, balancing blood fluidity and thrombosis, 
vascular inflammation and immunologic processes, and 
importantly, regulating vascular tone. We will focus on 
endothelial regulation of vascular tone in hypertension 
in this review.

Vascular tone is critically regulated by the endothelium 
via the synthesis and release of a variety of endothelium-
derived factors that exist in a delicate balance with each 
other. Endothelin-1 (ET-1), angiotensin II, thromboxane 
A2, and reactive oxygen species mediate vasoconstriction, 
whereas nitric oxide (NO), prostacyclin, carbon monoxide, 
and other endothelium-derived hyperpolarizing factors 
mediate vasodilation.3,4 Among these, NO appears to be 
a critical regulator of vascular homeostasis.5

PATHOPHYSIOLOGY OF ENDOTHELIAL  
DYSFUNCTION AND HYPERTENSION

Endothelial dysfunction (ED) occurs early after the diag-
nosis of essential hypertension and may even precede 
it.6 A major characteristic of ED is decreased NO bio-
availability. Endothelial cells synthesize NO through 
the constitutive expression of nitric oxide synthase-3 
(NOS-3), also known as endothelial nitric oxide synthase 
(eNOS),6 which facilitates both coupled and uncoupled 
reactions. In the healthy endothelium, a coupled eNOS 
leads to a Ca2+/calmodulin (CaM)-dependent phospho-
rylation that converts L-arginine to L-citrulline, resulting 
in generation of NO.1 The release of NO leads to smooth 
muscle vasodilation via a cyclic guanylate monophos-
phate (cGMP)-mediated activation of guanylate cyclase, 
altering resting vasomotor tone.

In conditions of increased oxidative stress (OS), an 
uncoupled Ca2+/CaM-independent reaction generates 
superoxide anions rather than NO.1 In this state, L- 
arginine and tetrahydrobiopterin (BH4) are depleted and 
peroxynitrite and asymmetric dimethylarginine (ADMA) 
levels are increased. Excess superoxide typically leads to 
further depletion of NO by formation of peroxynitrite, 
destabilization of eNOS, and an overall reduction in NO 
bioavailability. Overall, a reduction in substrate (L-argi-
nine) levels, presence of eNOS antagonists, elevated 
breakdown of NO due to OS, and decreased cofactors for 
eNOS, such as tetrahydrobiopterin lead to decreased NO 
bioavailability.2 Decreased NO availability leads to excess 
vasomotor tone, which in turn leads to hypertension, 
spasm, triggers of ischemic events, and other deleterious 
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effects on vasculature. Depletion of NO also results in 
nuclear factor-kappa b (NF-κB)-dependent activation of 
adhesion molecules, such as selectins that promote vas-
cular inflammation and increase the thrombotic potential 
of platelets and blood coagulability, ultimately increasing 
the risk of atherosclerosis and thrombosis.7 Inflammation 
and OS are associated with traditional and nontraditional 
cardiovascular risk factors, including essential hyper-
tension.2 Furthermore, reduced NO is associated with 
decreased endothelial progenitor cell (EPC) activity and 
function, thus impairing vascular regenerative potential.8 
Thus, decreased NO bioavailability leads to an alteration 
in endothelial homeostasis, creating a vasoconstrictive, 
proinflammatory, proatherosclerotic, prothrombotic, and 
antiregenerative milieu.1

INVASIVE EVALUATION OF ENDOTHELIAL 
FUNCTION

Endothelial function can be estimated with both inva-
sive testing of the coronary or peripheral vasculature 
and by noninvasive techniques. Assessment of coronary 
endothelial function is performed by direct infusion of 
endothelium-dependent vasodilators, such as acetyl-
choline, bradykinin, substance P, and others followed 
by measurement of changes in epicardial diameter and 
coronary blood flow. In the setting of normal endothelial 
function, acetylcholine causes epicardial dilation and 
increase in coronary blood flow. With ED, epicardial 
arteries constrict and flow increases to a lesser extent 
than in the normal setting.1,9,10

Measurements of blood flow changes during intrabra-
chial arterial infusion of these endothelium-dependent 
vasodilators can be used to assess endothelial function in 
the forearm circulation.4 During forearm plethysmogra-
phy, venous drainage is briefly interrupted by inflating a 
blood pressure cuff, while arterial inflow is maintained. 
Flow measurements are recorded as endothelial vasodi-
lators are infused. In the setting on normal endothelial 
function, acetylcholine, a commonly used endothelium-
dependent agonist, stimulates release of NO and other 
endothelium-dependent vasodilators, resulting in vasodi-
lation of the forearm circulation.11 To study the contribu-
tion of NO to the observed vasodilation, inhibitors of NO 
and other endothelium-derived relaxing factors can be 
employed.11-20 Finally, to study endothelium-independent 
function, NO donors, such as nitroprusside or nitroglycer-
ine are given and blood flow responses measured.

NONINVASIVE EVALUATION OF  
ENDOTHELIAL FUNCTION

Flow-mediated dilation (FMD) uses high-resolution 
ultrasound to assess endothelium-dependent brachial 

reactivity. The FMD of the brachial artery is almost 
entirely due to shear-mediated release of NO from the 
intact brachial artery endothelium and correlates with 
coronary artery endothelium-dependent responses to 
acetylcholine, effectively serving as a surrogate marker 
for coronary endothelial function.21 After transiently 
inducing ischemia by cuff inflation for 5 minutes and 
subsequent deflation, the resulting hyperemia increases 
brachial artery shear stress that releases NO from the 
healthy endothelium and causes the brachial artery to 
dilate. The magnitude of this FMD is proportional to the 
NO release from the endothelium.6

ENDOTHELIAL FUNCTION AND ADVERSE  
CARDIOVASCULAR OUTCOMES

Endothelial dysfunction, regardless of the underlying 
cause, is an independent predictor of future adverse 
cardiovascular events.22-24 In 3,026 subjects free of cardio-
vascular disease from the Multi-Ethnic Study of Athero-
sclerosis (MESA), followed for 5 years, each SD increase 
in FMD conferred a hazard ratio of 0.84 for incident car-
diovascular events. Importantly, FMD also improved net 
reclassification of risk when compared with the Framing-
ham risk score.24 Two further studies in more selected 
populations, including the Cardiovascular Health Study 
of elderly subjects and a study by Rossi et al25 in over 
2,000 postmenopausal women, support these findings by 
demonstrating significant association between impaired 
FMD and cardiovascular outcomes.24-26

ENDOTHELIAL DYSFUNCTION IN  
HYPERTENSION

A traditional and widely accepted viewpoint is that 
hypertension is a cause rather than a consequence of 
ED. Acute and chronic hypertension precipitates ED.27,28 
The Cardiovascular Risk in Young Finns study found 
that abnormal blood pressure in youth tended to predict 
future impaired endothelial function.4 In a cross-sectional 
analysis of 3,500 middle-aged participants in MESA, 
hypertension was associated with a lower FMD in all 
ethnicities.29 Finally, the degree of ED is related to the 
magnitude of blood pressure elevation.30,31

Multiple mechanistic studies have shown that the 
ED observed in hypertension is associated with reduced 
NO bioavailability in both conductance vessels and the 
microvasculature.32 Acetylcholine-mediated coronary 
and forearm vasodilation is blunted in hypertension com-
pared with normotensive controls.11 However, a study in 
a younger hypertensive population did not confirm this 
finding.33 To determine whether the reduced vasodilation 
with acetylcholine is due to reduced NO bioavailability, 
acetylcholine infusion was repeated after administration 
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of NG-monomethyl-L-arginine, a competitive inhibitor of 
eNOS synthesis. Inhibition of acetylcholine response was 
greater in normotensive than in hypertensive subjects, 
indicating reduced NO bioavailability in hypertension.34 
Further studies demonstrated that, at least partly, this 
reduction in NO activity is compensated by release of 
endothelium-derived hyperpolarizing factors.34 Infusion of 
vitamin C, that quenches free radicals when infused intra-
arterially, restored the reduced endothelium-dependent 
vasodilation in hypertensives, indicating the contribution 
of OS to the reduced NO bioavailability in hypertension.35

Endothelin-1, a powerful endogenous, endothelium-
derived vasoconstrictor peptide, is continuously released 
from the vascular endothelium and contributes to tonic 
vasomotor constrictor tone. The NO may inhibit the syn-
thesis and hemodynamic effects of ET-1; ET-I can stimu-
late NO production by stimulating the endothelial ET(B) 
receptors.36 Blockade of ET-1 receptors, either ET(A/B) or 
ETA, resulted in a significant increase in forearm blood 
flow in hypertensive, but not in normotensive controls. 
Moreover, ET blockade also improved acetylcholine-
mediated responses in hypertensive patients, indicating 
that increased ET-1 activity may play a role in the patho-
physiology of hypertension.37 This increased ET-1 activity 
was shown to be particularly higher in hypertensive black 
participants compared with white subjects.38

ENDOTHELIAL DYSFUNCTION AS A 
PRECURSOR TO HYPERTENSION

There is increasing evidence that ED, when present 
among normotensive subjects, may lead to future devel-
opment of hypertension.6 For example, eNOS knockout 
mice typically develop hypertension,6 infusion of NO 
synthase antagonists leads to elevation of blood pres-
sure,39 hypertensive subjects appear to have more NOS-3 
gene mutations,40 and normotensive offspring of hyper-
tensive patients demonstrate impaired endothelial func-
tion.41 In 952 postmenopausal women, free of risk factors 
including hypertension, Rossi et al25 found that the inci-
dence of hypertension over a 3.6-year follow-up period 
was 5.77-fold higher in those in the lowest FMD quartile 
compared with the highest, indicating a role for ED as a 
precursor in the development of hypertension.42 In MESA, 
1869 patients without hypertension were followed over 
a median of 4.8 years for incident hypertension. While 
the association between low FMD and incident hyperten-
sion was significant, this did not withstand multivariate 
adjustment for important confounders.43

BIOMARKERS OF ENDOTHELIAL DYSFUNCTION

Endothelial function can be estimated indirectly with 
certain circulating biomarkers, including ADMA, oxidized 

low-density lipoprotein, aminothiols including glutathione 
and cystine, certain adhesion molecules, such as intercel-
lular adhesion molecule-1, endothelial microparticles 
(EMPs), EPCs, endothelial glycocalyx, monocyte–platelet 
aggregates, and others.

Asymmetric Dimethylarginine

Asymmetric dimethylarginine is an endogenous compet-
itive antagonist of NO synthase.44 Hypertensive patients 
have higher ADMA levels compared with normotensive, 
healthy controls45 and higher ADMA levels have been 
associated with both ED and increased intima–media 
thickness (IMT).46 The ADMA levels correlate with 
pulse wave velocity, further indicating its contribution 
to hypertension and increased arterial stiffness.47 The 
ADMA levels are also elevated in those with a high-risk 
factor burden, chronic kidney disease,48 coronary heart 
disease, and stroke. Importantly, higher ADMA levels are 
associated with adverse long-term outcomes.49,50

Aminothiols

Oxidative stress is implicated in the pathophysiology of 
ED as described earlier and in multiple conditions includ-
ing CVD.50 Recent studies have shown the importance 
of nonfree radical species as indicators and mediators 
of OS.51 Proteins are susceptible to oxidation through 
alterations of reactive aminothiol residues and such 
covalent modifications serve to alter their cellular sign-
aling activity, thereby coupling redox modifications of 
aminothiols to functional activity.52 Importantly, these 
aminothiols can be quantified in plasma to assess the 
oxidant burden in vivo.53 Of these, cysteine constitutes the 
major aminothiol pool extracellularly that reacts readily 
with oxidants to form its oxidized disulfide cystine. Intra-
cellularly, glutathione is a major antioxidant that helps 
eliminate peroxides and maintain cellular redox, and its 
oxidized form is glutathione disulfide.54 We have shown 
that increased OS, measured as higher levels of cystine, 
lower levels of glutathione, or altered ratios of oxidized to 
reduced aminothiols, is associated with cellular dysfunc-
tion, aging, risk factors for CVD including hypertension 
and subclinical vascular disease including ED, micro-
vascular dysfunction, arterial stiffness, increased carotid 
IMT, and pulmonary hypertension.52,55-62

Endothelial Progenitor Cells

Endothelial progenitor cells are bone marrow-derived stem 
cells with the potential to differentiate into mature vascular 
endothelium. Endothelial dysfunction may be considered 
to be a result of a balance between the magnitude of injury 
due to exposure to risk factors and the capacity for endothe-
lial repair.63 Although risk factor-mediated injury to the 
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vascular endothelium is well understood, the mechanisms 
underlying regeneration and the pivotal role of progenitor 
cells (PCs) in vascular repair and hence, to cardiovascu-
lar health have only recently been appreciated.63-65 The 
EPCs are mononuclear cells that originate primarily (but 
not exclusively) from the bone marrow and differentiate 
into endothelial cells both in vitro and in vivo.66,67 The PCs 
reside primarily in bone marrow, circulate, and contribute 
to blood vessel formation during tissue repair.67-79 Endog-
enous PCs contribute to reendothelialization of tissues 
after endothelial injury, attenuating progression to frank 
atherosclerosis.80-85 Circulating PCs are multilineage, but 
the most common circulating PCs are of hematopoietic and 
EPCs that are capable of vascular repair, largely by their 
paracrine activities.86,87 Our recent studies have shown 
reduction in the number and migratory activity of PCs in 
patients with coronary artery disease (CAD) compared 
with healthy subjects.88-93 Endothelial dysfunction cor-
relates with PC number and function.89,94 Importantly, a 
low PC count appears to be an independent predictor of 
poor outcome in patients with CAD,89,95 stroke, or acute 
lung injury.94-97

Endothelial Microparticles

Endothelial microparticles are composed of endothelial 
cellular debris that breaks off into small membrane 
vesicles comprised of their native cell membrane and 
cytoplasm. Using flow cytometry, these microparticles 
are classified into EMPs, leukocyte microparticles, and 
platelet microparticles (PMPs).98 The EMPs have been 
used as surrogates for ED99 and been associated with 
decreased NO bioavailability and with the severity of 
hypertension.100-104 In 844 participants enrolled in the 
Framingham offspring cohort,99 circulating EMP levels 
were associated with the development of traditional 
cardiovascular risk factors, including hypertension.99 
Patients with severe hypertension, compared with those 
with mild hypertension or normal blood pressure, had 
significantly elevated EMPs and PMPs.103

Therapeutic Targets

Both classic antihypertensive therapies, therapy tar-
geted toward cardiovascular risk factors and therapy 
targeting the NO pathway, have been studied in 
patients with hypertension.105 Antihypertensive agents, 
including angiotensin-converting enzyme inhibitors 
(ACEi), angiotensin-II type I receptor blockers (ARBs), 
nebivolol, a third-generation beta receptor antagonist, 
and amlodipine, appear to improve ED in patients with 
hypertension.106-108 In a meta-analysis involving 1,129 
heterogeneous patients at increased cardiovascular 
risk, ACEi and ARBs significantly improved brachial 

FMD compared with beta-blockers and calcium channel 
blockers.108 Both irbesartan and nebivolol in combination 
with hydrochlorothiazide improved vascular function 
in hypertension.107 Nebivolol, in particular, has demon-
strated increased NO availability, enhanced antithrom-
botic activity, and improvement in markers of ED.107 Both 
in patients with essential hypertension and in murine 
models, the combination of amlodipine and atorvastatin 
improved vascular function.109 The BH4 acts as a cofactor 
of NO synthase and a scavenger for free radicals.110 In 
patients with hypertension receiving BH4 supplementa-
tion, investigators have demonstrated improvement in 
endothelial function.110

SUMMARY

Hypertension is characterized by ED, reduced NO bio-
availability, and increased OS, and ED may even precede 
the development of hypertension. The magnitude of ED 
is predictive of adverse cardiovascular outcomes, and 
improvement in ED by medications and other means 
may reflect reduced risk. Markers that reflect ED are 
being studied for utility, validity, and clinical application.
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