Precision medicine also known as “personalized medicine” is a healthcare delivery system based on identifying biomarkers using genomics to link endotypes with phenotypes. Significant overlap exists between different phenotypes. Endotyping helps in giving a more precise definition of the phenotypes. However, it has proved to be most helpful in the development of therapeutics in oncology. Precision medicine has been brought to much more common use with COVID-19 with various drugs developed targeting interleukins. Precision medicine is now being actively developed for the management of infectious diseases and chronic and lifestyle diseases. Various challenges still exist in the path of future development of precision medicine such as cost, ethics, incorporation of machine learning, and availability of trained manpower to manage the data and algorithms. In this review, we will discuss the growth and challenges precision medicine faces in the field of respiratory care.
National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease [Internet]. Washington (DC): National Academies Press (US); 2011 [cited 2023 Aug 27]. (The National Academies Collection: Reports funded by National Institutes of Health). Available from: http://www.ncbi.nlm.nih.gov/books/NBK91503/
Sackett DL, Rosenberg WMC, Gray JAM, et al. Evidence based medicine: what it is and what it isn't. BMJ 1996;312:71–72. DOI: 10.1136/bmj.312.7023.71
Rennard SI, Vestbo J. The many “small COPDs”: COPD should be an orphan disease. Chest 2008;134(3):623–627. DOI: 10.1378/chest.07-3059
Jameson JL, Longo DL. Precision medicine–personalized, problematic, and promising. N Engl J Med 2015;372(23):2229–2234. DOI: 10.1056/NEJMsb1503104
Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health 2019;85(1):8. DOI: 10.5334/aogh.2419
Howlader N, Forjaz G, Mooradian MJ, et al. The effect of advances in lung-cancer treatment on population mortality. N Engl J Med 2020;383(7):640–649. DOI: 10.1056/NEJMoa1916623
Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009;361(10):947–957. DOI: 10.1056/NEJMoa0810699
Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013;368(25):2385–2394. DOI: 10.1056/NEJMx150036
Teramoto A, Tsukamoto T, Kiriyama Y, et al. Automated classification of lung cancer types from cytological images using deep convolutional neural networks. Biomed Res Int 2017;2017:4067832. DOI: 10.1155/2017/4067832
Onoi K, Chihara Y, Uchino J, et al. Immune checkpoint inhibitors for lung cancer Treatment: a review. J Clin Med 2020;9(5):1362. DOI: 10.3390/jcm9051362
Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348(6230):124–128. DOI: 10.1126/science.aaa1348
Steuer CE, Papadimitrakopoulou V, Herbst RS, et al. Innovative clinical trials: the Lung-MAP study. Clin Pharmacol Ther 2015;97(5):488–491. DOI: 10.1002/cpt.88
Guilleminault L, Ouksel H, Belleguic C, et al. Personalised medicine in asthma: from curative to preventive medicine. Eur Respir Rev 2017;26(143):160010. DOI: 10.1183/16000617.0010-2016
Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 2008;178(3):218–224. DOI: 10.1164/rccm.200711-1754OC
Wilson S, Ward J, Sousa A, et al. The U-BIOPRED severe asthma study: immunopathological characterisation. Eur Respir J 2014;44 (Suppl 58):P3875. DOI: 10.1183/13993003.01129-2016
Lai T, Wang S, Xu Z, et al. Long-term efficacy and safety of omalizumab in patients with persistent uncontrolled allergic asthma: a systematic review and meta-analysis. Sci Rep 2015;5:8191. DOI: 10.1038/srep08191
Wenzel S, Ford L, Pearlman D, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 2013;368(26):2455–2466. DOI: 10.1056/NEJMoa1304048
Wenzel SE, Schwartz LB, Langmack EL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999;160(3):1001–1008. DOI: 10.1164/ajrccm.160.3.9812110
Jatakanon A, Uasuf C, Maziak W, et al. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 1999;160(5 Pt 1):1532–1539. DOI: 10.1164/ajrccm.160.5.9806170
Corren J, Menzies-Gow A, Chupp G, et al. Efficacy of tezepelumab in severe, uncontrolled asthma: pooled analysis of the pathway and navigator clinical trials. Am J Respir Crit Care Med 2023;208(1):13–24. DOI: 10.1164/rccm.202210-2005OC
Pavord ID, Chanez P, Criner GJ, et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N Engl J Med 2017;377(17):1613–1629. DOI: 10.1056/NEJMoa1708208
Atherton HC, Jones G, Danahay H. IL-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase regulation. Am J Physiol Lung Cell Mol Physiol 2003;285(3):L730–L739. DOI: 10.1152/ajplung.00089.2003
Bhatt SP, Rabe KF, Hanania NA, et al. Dupilumab for COPD with type 2 inflammation indicated by eosinophil counts. N Eng J Med 2023;389(3):205–214. DOI: 10.1056/NEJMoa2303951
Skov M, Hansen CR, Pressler T. Cystic fibrosis - an example of personalized and precision medicine. APMIS 2019;127(5):352–360. DOI: 10.1111/apm.12915
Beitler JR, Thompson BT, Baron RM, et al. Advancing precision medicine for acute respiratory distress syndrome. Lancet Respir Med 2022;10(1):107–120. DOI: 10.1016/S2213-2600(21)00157-0
Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2014;2(8):611–620. DOI: 10.1016/S2213-2600(14)70097-9
Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 2018;6(9):691–698. DOI: 10.1016/S2213-2600(18)30177-2
Rautanen A, Mills TC, Gordon AC, et al. Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study. Lancet Respir Med 2015;3(1):53–60. DOI: 10.1016/S2213-2600(14)70290-5
Jabaudon M, Blondonnet R, Pereira B, et al. Plasma sRAGE is independently associated with increased mortality in ARDS: a meta-analysis of individual patient data. Intensive Care Med 2018;44(9):1388–1399. DOI: 10.1007/s00134-018-5327-1
Tsangaris I, Tsantes A, Vrigkou E, et al. Angiopoietin-2 levels as predictors of outcome in mechanically ventilated patients with acute respiratory distress syndrome. Dis Markers 2017;2017:6758721. DOI: 10.1155/2017/6758721
Jabaudon M, Blondonnet R, Ware LB. Biomarkers in acute respiratory distress syndrome. Curr Opin Crit Care 2021;27(1):46–54. DOI: 10.1097/MCC.0000000000000786
Guillen-Guio B, Lorenzo-Salazar JM, Ma SF, et al. Sepsis-associated acute respiratory distress syndrome in individuals of European ancestry: a genome-wide association study. Lancet Respir Med 2020;8(3):258–266. DOI: 10.1016/S2213-2600(19)30368-6