Citation Information :
Selvaratnam V, Roche A, Narayan B, Giotakis N, Mukhopadhaya S, Aniq H, Nayagam S. Effectiveness of an Antibiotic-impregnated Bioabsorbable Carrier for the Treatment of Chronic Intramedullary and Diffuse Osteomyelitis. 2023; 18 (3):148-154.
Aim: The surgical management of chronic intramedullary osteomyelitis involves debridement of affected non-viable tissue and the use of antibiotics. Where surgery leaves a cavity, dead-space management is often through antibiotic-impregnated bone cement. These depots of local antibiotics are variable in elution properties and need removal. We review our unit's experience using a bioabsorbable synthetic calcium sulphate to deliver gentamicin as an adjunct in the treatment of osteomyelitis involving the medullary canal.
Materials and methods: We retrospectively reviewed 34 patients with chronic osteomyelitis who were treated using this method in our institute. Variables recorded included aetiology, previous interventions, diagnostic criteria, radiological features, serology, and microbiology. The Cierny–Mader system was used to classify. Follow-up involved a survival analysis to time to recurrence, clinical and functional assessment (AOFAS-Ankle/IOWA knee/Oxford Hip/DASH scores) and a general health outcome questionnaire (SF36). The primary outcome measure was clinical recurrence of infection.
Results: There were 24 male and 10 female patients. The mean age at presentation was 47 years (20–67). Clinical, laboratory, radiological, and patient reported outcomes were obtained at a median follow-up of 2.5 years (1.4–6.6 years). The bones involved were the femur (14, 41%), tibia (16, 47%), radius (1, 3%), and humerus (3, 9%). There were 13 cases classified as Cierny–Mader stage IV (diffuse with intramedullary osteomyelitis) and 21 cases as Cierny-Mader stage I. The median Oxford Hip score was 38 (11 patients, range 9–48). The median AOFAS score was 78 (14 patients, range 23–100). The median IOWA knee score was 71 (25 patients, range 22–95). The median DASH score was 33 (2 patients, range 1.7–64.2). There were two recurrences. The treatment success to date is 94%.
Conclusion: In our series of patients, bioabsorbable carriers of antibiotics appear to be effective adjuncts to surgical treatment of osteomyelitis and were associated with high clinical success rates.
Cierny G, 3rd. Infected tibial nonunions (1981–1995). The evolution of change. Clinical orthopaedics and related research 1999(360):97–105. DOI: 10.1097/00003086-199903000-00012.
Caesar BC, Morgan-Jones RL, Warren RE, et al. Closed double-lumen suction irrigation in the management of chronic diaphyseal osteomyelitis: Long-term follow-up. J Bone Joint Surg Br 2009;91(9):1243–1248. DOI: 10.1302/0301-620x.91b9.21768.
Esterhai JL Jr, Sennett B, Gelb H, et al. Treatment of chronic osteomyelitis complicating nonunion and segmental defects of the tibia with open cancellous bone graft, posterolateral bone graft, and soft-tissue transfer. J Trauma 1990;30(1):49–54. DOI: 10.1097/00005373-199001000-00008.
Gilbert DN, Dworkin RJ, Raber SR, et al. Outpatient parenteral antimicrobial-drug therapy. N Engl J Med 1997;337(12):829–838. DOI: 10.1056/nejm199709183371207.
Plowman R. The socioeconomic burden of hospital acquired infection. Euro surveillance : bulletin Europeen sur les maladies transmissibles = Eur Commun Dis Bull 2000;5(4):49–50. DOI: 10.2807/esm.05.04.00004-en.
Kluin OS, van der Mei HC, Busscher HJ, et al. Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin Drug Ddeliv 2013;10(3):341–351. DOI: 10.1517/17425247.2013.751371.
Cierny GMJ, Pennick JJ. A clinical staging system for adult osteomyelitis. Contemp Orthop 1985;10:17–37. DOI: 10.1097/01.blo.0000088564.81746.62.
Calhoun JH, Manring MM, Shirtliff M. Osteomyelitis of the long bones. Semin Plastic Surg 2009;23(2):59–72. DOI: 10.1055/s-0029-1214158.
Gitelis S, Brebach GT. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg (Hong Kong) 2002;10(1):53–60. DOI: 10.1177/230949900201000110.
McKee MD, Li-Bland EA, Wild LM, et al. A prospective, randomized clinical trial comparing an antibiotic-impregnated bioabsorbable bone substitute with standard antibiotic-impregnated cement beads in the treatment of chronic osteomyelitis and infected nonunion. J Orthop Trauma 2010;24(8):483–490. DOI: 10.1097/BOT.0b013e3181df91d9.
Beuerlein MJ, McKee MD. Calcium sulphates: What is the evidence? J Orthop Trauma 2010;24 Suppl 1:S46–S51. DOI: 10.1097/BOT.0b013e3181cec48e.
Peters CL, Hines JL, Bachus KN, et al. Biological effects of calcium sulphate as a bone graft substitute in ovine metaphyseal defects. J Biomed Mater Res A 2006;76(3):456–462. DOI: 10.1002/jbm.a.30569.
Thomas MV, Puleo DA. Calcium sulphate: Properties and clinical applications. J Biomed Mater Res B Appl Biomater 2009;88(2):597–610. DOI: 10.1002/jbm.b.31269.
Mousset B, Benoit MA, Delloye C, et al. Biodegradable implants for potential use in bone infection. An in vitro study of antibiotic-loaded calcium sulphate. Int Orthop 1995;19(3):157–161. DOI: 10.1007/BF00181861.
Evans RP, Nelson CL. Gentamicin-impregnated polymethylmethacrylate beads compared with systemic antibiotic therapy in the treatment of chronic osteomyelitis. Clin Orthop Relat Res 1993;(295):37–42. PMID: 8403668.
Walenkamp GH, Kleijn LL, de Leeuw M. Osteomyelitis treated with gentamicin-PMMA beads: 100 patients followed for 1–12 years. Acta Orthop Scand 1998;69(5):518–522. DOI: 10.3109/174536798089 97790.
Blaha JD, Calhoun JH, Nelson CL, et al. Comparison of the clinical efficacy and tolerance of gentamicin PMMA beads on surgical wire versus combined and systemic therapy for osteomyelitis. Clin Orthop Relat Res 1993;(295):8–12. PMID: 8403674.
Henry SL, Hood GA, Seligson D. Long-term implantation of gentamicin-polymethylmethacrylate antibiotic beads. Clin Orthop Relat Res 1993;(295):47–53. PMID: 8403670.
Nelson CL, McLaren SG, Skinner RA, et al. The treatment of experimental osteomyelitis by surgical debridement and the implantation of calcium sulphate tobramycin pellets. J Orthop Res 2002;20(4):643–647. DOI: 10.1016/S0736-0266(01)00133-4.
Gogia JS, Meehan JP, Di Cesare PE, et al. Local antibiotic therapy in osteomyelitis. Semin Plast Surg 2009;23(2):100–107. DOI: 10.1055/s-0029-1214162.
Shakil S, Khan R, Zarrilli R, et al. Aminoglycosides versus bacteria–A description of the action, resistance mechanism, and nosocomial battleground. J Biomed Sci 2008;15(1):5–14. DOI: 10.1007/s11373-007-9194-y.
Edson RS, Terrell CL. The aminoglycosides. Mayo Clinic proceedings 1999;74(5):519–528. DOI: 10.4065/74.5.519.
Buchholz HW, Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins]. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen 1970;41(11):511–515. PMID: 5487941.
Klemm K, Schnettler R. The use of gentamicin-PMMA chains in the treatment of infected tibial nonunion. Acta Orthop Belg 1992;58 Suppl 1:222–226. PMID: 1456012.
Lalidou F, Kolios G, Drosos GI. Bone Infections and bone graft substitutes for local antibiotic therapy. Surg Technol Int 2014;24: 353–362. PMID: 24504740.
Ostermann PA, Seligson D, Henry SL. Local antibiotic therapy for severe open fractures. A review of 1085 consecutive cases. J Bone Joint Surg Br 1995;77(1):93–97. PMID: 7822405.
El-Husseiny M, Patel S, MacFarlane RJ, et al. Biodegradable antibiotic delivery systems. J Bone Joint Surg Br 2011;93(2):151–157. DOI: 10.1302/0301-620x.93b2.24933.
Wenke JC, Owens BD, Svoboda SJ, et al. Effectiveness of commercially-available antibiotic-impregnated implants. J Bone Joint Surg Br 2006;88(8):1102–1104. DOI: 10.1302/0301-620x.88b8.17368.
Thomas DB, Brooks DE, Bice TG, et al. Tobramycin-impregnated calcium sulphate prevents infection in contaminated wounds. Clin Orthop Relat Res 2005;441:366–371. DOI: 00003086-200512000-00055.
Turner TM, Urban RM, Hall DJ, et al. Local and systemic levels of tobramycin delivered from calcium sulphate bone graft substitute pellets. Clin Orthop Relat Res 2005;(437):97–104. DOI: 00003086-200508000-00017.
van Vugt TA, Geurts J, Arts JJ. Clinical application of antimicrobial bone graft substitute in osteomyelitis treatment: A systematic review of different bone graft substitutes available in clinical treatment of osteomyelitis. Biomed Res Int 2016;2016:6984656. DOI: 10.1155/2016/6984656.
Fleiter N, Walter G, Bosebeck H, et al. Clinical use and safety of a novel gentamicin-releasing resorbable bone graft substitute in the treatment of osteomyelitis/osteitis. Bone Joint Res 2014;3(7):223–229. DOI: 10.1302/2046-3758.37.2000301.
McKee MD, Wild LM, Schemitsch EH, et al. The use of an antibiotic-impregnated, osteoconductive, bioabsorbable bone substitute in the treatment of infected long bone defects: Early results of a prospective trial. J Orthop Trauma 2002;16(9):622–627.
Tsai YH, Tsung-Jen H, Shih HN, et al. Treatment of infected tibial nonunion with tobramycin-impregnated calcium sulphate: Report of two cases. Chang Gung Med J 2004;27(7):542–547. PMID: 15508877.
Buranapanitkit B, Srinilta V, Ingviga N, et al. The efficacy of a hydroxyapatite composite as a biodegradable antibiotic delivery system. Clin Orthop Relat Res 2004;(424):244–252. DOI: 00003086-200407000-00038 [pii].
Shirtliff ME, Calhoun JH, Mader JT. Experimental osteomyelitis treatment with antibiotic-impregnated hydroxyapatite. Clin Orthop Relat Res 2002;(401):239–247.
Humm G, Noor S, Bridgeman P, et al. Adjuvant treatment of chronic osteomyelitis of the tibia following exogenous trauma using OSTEOSET(®)-T: A review of 21 patients in a regional trauma centre. Strategies Trauma Limb Reconstr 2014;9(3):157–161. DOI: 10.1007/s11751-014-0206-y.
Beardmore AA, Brooks DE, Wenke JC, et al. Effectiveness of local antibiotic delivery with an osteoinductive and osteoconductive bone-graft substitute. J Bone Joint Surg Am 2005;87(1):107–112. DOI: 10.2106/jbjs.c.01670.