MGM Journal of Medical Sciences

Register      Login

VOLUME 6 , ISSUE 2 ( April-June, 2019 ) > List of Articles

REVIEW ARTICLE

Technological Challenges for Management of Genetic Complexities of Myelodysplastic Syndromes

Bani B Ganguly, Nitin N Kadam

Keywords : Chromosomal rearrangements, Mutational complexities, Myelodysplastic syndrome, Somatic mutations, Technological challenges

Citation Information : Ganguly BB, Kadam NN. Technological Challenges for Management of Genetic Complexities of Myelodysplastic Syndromes. MGM J Med Sci 2019; 6 (2):83-89.

DOI: 10.5005/jp-journals-10036-1239

License: CC BY-NC 4.0

Published Online: 01-10-2019

Copyright Statement:  Copyright © 2019; The Author(s).


Abstract

Background: Chromosomal abnormalities (CA), including del(3q, 5q, 7q, 11q, 12p, 17p, 20q); loss of 5, 7, and Y; trisomy(8,19); i(17q); and balanced and unbalanced translocations have been demonstrated as prognostic markers in 5-tier risk-grouping and WHO-2016 classification of myelodysplastic syndromes (MDS). However, monosomal karyotype (MK) in the presence or absence of a complex karyotype (CK) has not been considered in the WHO classification. Additionally, a plethora of somatic mutations of MDS-specific and elderly populations collected through a-CGH, SNP-array, next-generation, and targeted sequencing has led to understanding of their impact on MDS-phenotype, initiation and progression of the disease, and treatment outcome in single or cooperating effects of comutations of several pathway-mechanisms. Methods: The present review on technological challenges has been raised on the information available through Google-search using MDS-genetics, mutations of MDS, diagnosis and prognosis of MDS, etc. with a view to understanding the possibilities in low-resource settings. Results: Mutual exclusivity and cross-talk of such mutations help in self-renewal of leukemic stem cells. However, molecular screening is not only time-consuming but also expensive in poor-economic settings. Nevertheless, the significance of unspecific and uncalled mutations is yet to be understood. In contrast, conventional cytogenetic assays have specific aberrations of prognostic and therapeutic values, which cover the whole genome in a cost-effective manner. However, since somatic mutations of clonal hematopoiesis of indeterminate potential (CHIP) in asymptomatic and/or patients with idiopathic cytopenia of undetermined significance (ICUS) have the potential for favoring the leukemic onset to progression, molecular screening has inherent importance within the disease-mechanism. Conclusion: The WHO-2016 risk-classification has considered mutations of SF3B1, TP53, and MLL for management of MDS, and also powered conventional cytogenetics for diagnosis and risk-stratification of MDS.


PDF Share
  1. Ganguly BB, Dolai TK, et al. Spectrum of complex chromosomal aberrations in a myelodysplastic syndrome (MDS) and a brief review. J Can Res Ther 2016 Jul–Sep;12(3):1203–1206. DOI: 10.4103/0973-1482.197563.
  2. Hasse D, Germing U, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: Evidence from a core dataset of 2124 patients. Blood 2007 Dec;110(13):4385–4395. DOI: 10.1182/blood-2007-03-082404.
  3. Olney HJ, Le Beau MM. Evaluation of recurring cytogenetic abnormalities in the treatment of myelodysplastic syndromes. Leuk Res 2007 Apr;31(4):427–434. DOI: 10.1016/j.leukres.2006.10.023.
  4. Schanz J, Tüchler H, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol 2012 Mar;30(8):820–829. DOI: 10.1200/JCO.2011.35.6394.
  5. Ganguly BB, Mandal S, et al. Experience of Conventional Cytogenetics in Elderly Cytopenic Indian Patients Suspected with Myelodysplastic Syndromes. Blood 2016;128(22):5488.
  6. Greenberg P, Coc C, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997 Mar;89(6):2079–2088.
  7. Look AT. Molecular pathogenesis of MDS. Hematology Am Soc Hematol Educ Program 2005; 156–160. DOI: 10.1182/asheducation-2005.1.156.
  8. Xie M, Lu C, et al. Age-related mutations associated with clonal hematopoietic expansion. Nat Med 2014 Dec;20(12):1472–1478. DOI: 10.1038/nm.3733.
  9. Bejar R, Lord A, et al. TET2 mutations predict response to hypermethylating agents in myelodysplastic syndrome patients. Blood 2014 Oct;124(17):2705–2712. DOI: 10.1182/blood-2014-06-582809.
  10. Haferlach T, Nagata Y, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 2014 Feb;28(2):241–247. DOI: 10.1038/leu.2013.336.
  11. Walter MJ, Shen D, et al. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia 2013 Jun;27(6):1275–1282. DOI: 10.1038/leu.2013.58.
  12. Harada H, Harada Y. Recent advances in myelodysplastic syndromes: Molecular pathogenesis and its implications for targeted therapies. Cancer Sci 2015 Apr;106(4):329–336. DOI: 10.1111/cas.12614.
  13. Bejar R, Stevenson K, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011 Jun;364(26):2496–2506. DOI: 10.1056/NEJMoa1013343.
  14. Lukackova R, Bujalkova MG, et al. Molecular genetic methods in the diagnosis of myelodysplastic syndromes. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014;158(3):339–345. DOI: 10.5507/bp.2013.084.
  15. Kulasekararaj AG, Mohamedali AM, et al. Recent advances in understanding the molecular pathogenesis of myelodysplastic syndromes. B J Hematol 2013 Sep;162(5):587–605. DOI: 10.1111/bjh.12435.
  16. Nybakken GE, Bagg A. The genetic basis and expanding role of molecular analysis in the diagnosis, prognosis and therapeutic design for myelodysplastic syndromes. J Mol Diagn 2014 Mar;16(2):145–158. DOI: 10.1016/j.jmoldx.2013.11.005.
  17. Abdel-Wahab O, Figueroa ME. Interpreting new molecular genetics in myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program 2012 2012; 56–64. DOI: 10.1182/asheducation-2012.1.56.
  18. Bejar R, Lord A, et al. TET2 mutations predict response to hypermethylating agents in myelodysplastic syndrome patients. Blood 2014 Oct;124(17):2705–2712. DOI: 10.1182/blood-2014-06-582809.
  19. Kantarjian H, Issa JP, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006 Apr;106(8):1794–1803. DOI: 10.1002/cncr.21792.
  20. Krönke J, Fink EC, et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 2015 Jul;523(7559): 183–188. DOI: 10.1038/nature14610.
  21. Genovese G, Kähler AK, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014 Dec;371(26):2477–2487. DOI: 10.1056/NEJMoa1409405.
  22. Jaiswal S, Fontanillas P, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014 Dec;371(26): 2488–2498. DOI: 10.1056/NEJMoa1408617.
  23. Shlush LI, Zandi S, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014 Feb;506(7488):328–333. DOI: 10.1038/nature13038.
  24. Welch JS, Ley TJ, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012 Jul;150(2):264–278. DOI: 10.1016/j.cell.2012.06.023.
  25. Steensma DP, Bejar R, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015 Jul;126(1):9–16. DOI: 10.1182/blood-2015-03-631747.
  26. Heuser M, Thol F, et al. Clonal hematopoiesis of indeterminate potential: a risk factor for hematologic neoplasia. Dtsch Arztebl Int 2016;113(18):317–322.
  27. Patnaik MM, Hanson CA, et al. Monosomal karyotype in myelodysplastic syndromes, with or without monosomy 5 or 7, is prognostically worse than an otherwise complex karyotype. Leukemia 2011 Feb;25(2):266–270. DOI: 10.1038/leu.2010.258.
  28. Belli CB, Bengió R, et al. Partial and total monosomal karyotypes in myedysplastic syndromes: comparative prognostic relevance among 421 patients. Am J Hematol 2011 Jul;86(7):540–545. DOI: 10.1002/ajh.22034.
  29. Schanz J, Tüchler H, et al. Monosomal karyotype in MDS: explaining the poor prognosis? Leukemia 2013 Oct;27(10):1988–1995. DOI: 10.1038/leu.2013.187.
  30. Perdigão J, Gomes da SM. Monosomal karyotype (MK) in myeloid malignancies. Atlas Genet Cytogenet Oncol Hematol 2011;15(10): 890–891.
  31. Arber DA, Orazi A, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(20):2391–2405. DOI: 10.1182/blood- 2016-03-643544.
  32. Ebert BL, Pretz J, et al. Identification of RPS14 as a 5q-syndrome gene by RNA interference screen. Nature 2008 Jan;451(7176):335–339. DOI: 10.1038/nature06494.
  33. Jädersten M, Saft L, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 2011;29(15):1971–1979. DOI: 10.1200/JCO.2010.31.8576.
  34. Lai F, Godley LA, et al. Transcript map and comparative analysis of the 1.5-Mb commonly deleted segment of human 5q31 in malignant myeloid diseases with a del(5q). Genomics 2001 Jan;71(2):235–245. DOI: 10.1006/geno.2000.6414.
  35. Papaemmanuil E, Gerstung M, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013 Nov;122(22):3616–3627. DOI: 10.1182/blood-2013-08-518886.
  36. Yoshida K, Sanada M, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011;478(7367):64–69. DOI: 10.1038/nature10496.
  37. Itzykson R, Kosmider O, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol 2013 Jul;31(19):2428–2436. DOI: 10.1200/JCO.2012.47.3314.
  38. Odenike O, Onida F, et al. Myelodysplastic syndromes and myedysplastic/myeloproliferative neoplasms: An update on risk stratification, molecular genetics, and therapeutic approaches including allogenic hematopoietic stem cell transplantation. Am Soc Clin Oncol Educ Book 2015; e398–e412. DOI: 10.14694/EdBook_AM.2015.35.e398.
  39. Ganguly BB, Kadam NN. Genetics and tyrosine kinase inhibitors of chronic myeloid leukemia. Nucleus 2019;62:155–164. DOI: 10.1007/s13237-019-00271-6.
  40. Lindsley RC, Ebert BL. The biology and clinical impact of genetic lesions in myeloid malignancies. Blood 2013;122(23):3741–3748. DOI: 10.1182/blood-2013-06-460295.
  41. Barlow JL, Drynan LF, et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q-syndrome. Nat Med 2010 Jan;16(1):59–66. DOI: 10.1038/nm.2063.
  42. Deeg HJ, Scott BL, et al. Five-group cytogenetic risk classification, monosomal karyotype, and outcome after hematopoietic cell transplantation for MDS or acute leukemia evolving from MDS. Blood 2012;120(7):1398–1408. DOI: 10.1182/blood-2012-04-423046.
  43. Laurie CC, Laurie CA, et.al Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 2012 May;44(6): 642–650. DOI: 10.1038/ng.2271.
  44. Jacobs KB, Yeager M, et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 2012 May;44(6):651–658. DOI: 10.1038/ng.2270.
  45. Busque L, Patel JP, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012;44:1179–1181. DOI: 10.1038/ng.2413.
  46. Kwok B, Hall JM, et al. MDS-associated somatic murations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood 2015;126(21):2355–2361. DOI: 10.1182/blood-2015-08-667063.
  47. Ganguly BB, Banerjee D, et al. Impact of chromosome alterations, genetic mutations and clonal hematopoiesis of indeterminate potential (CHIP) on the classification and risk stratification of MDS. Blood Cells Mol Dis 2018;69:90–100. DOI: 10.1016/j.bcmd.2017.10.001.
  48. Ganguly BB, Kadam NN. Mutations of myelodysplastic syndromes (MDS): An update. Mutat Res 2016;769:47–62. DOI: 10.1016/j.mrrev.2016.04.009.
  49. Kosmider O, Gelsi-Boyer V, et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood 2009;114:3285–3291. DOI: 10.1182/blood-2009-04-215814.
  50. Ganguly BB. Small-molecule inhibitors of epigenetic mutations as compelling drug targets for myelodysplastic syndromes. Curr Cancer Drug Targets 2017;17(7):586–602. DOI: 10.2174/1568009617666170330145002.
  51. Coleman JF, Theil KS, et al. Diagnostic yield of bone marrow and peripheral blood FISH panel testing in clinically suspected myelodysplastic syndromes and/or acute myeloid leukemia: a prospective analysis of 433 cases. Am J Clin Pathol 2011 Jun;135(6): 915–920. DOI: 10.1309/AJCPW10YBRMWSWYE.
  52. Douet-Guilbert N, Herry A, et al. Interphase FISH does not improve the detection of Del(5q) and Del(20q) in myelodysplastic syndromes. Anticancer Res 2011 Mar;31(3):1007–1010.
  53. Jiang H, Xue Y, et al. The utility of fluorescence in situ hybridization analysis in myelodysplastic syndromes is limited to cases with karyotypic failure. Leuk Res 2012 Apr;36(4):448–452. DOI: 10.1016/j.leukres.2011.10.014.
  54. Wilkens L, Burkhardt D, et al. Cytogenetic aberrations in myelodysplastic syndrome detected by comparative genomic hybridization and fluorescence in situ hybridization. Diagn Mol Pathol 1999 Mar;8(1):47–53. DOI: 10.1097/00019606-199903000-00008.
  55. Heard PL, Carter EM, et al. High resolution genomic analysis of 18q- using oligo-microarray comparative genomic hybridization (aCGH). Am J Med Genet 2009 Jul;149A(7):1431–1437. DOI: 10.1002/ajmg.a.32900.
  56. Thiel A, Beier M, et al. Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance. Leukemia 2011 Mar;25(3):387–399. DOI: 10.1038/leu. 2010.293.
  57. Miller DT, Adam MP, et al. Consensus statement: Chomosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010 May;86(5):749–764. DOI: 10.1016/j.ajhg.2010.04.006.
  58. Kolquist KA, Schultz RA, et al. Microarray-based comparative genomic hybridization of cancer targets reveals novel, recurrent genetic aberrations in the myelodysplastic syndromes. Cancer Genet 2011 Nov;204(11):603–628. DOI: 10.1016/j.cancergen.2011.10.004.
  59. Tiu RV, Gondek LP, et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 2011;117(17):4552–4560. DOI: 10.1182/blood-2010-07- 295857.
  60. Makishima H, Rataul M, et al. FISH and SNP-A karyotyping in myelodysplastic syndromes: improving cytogenetic detection of del(5q), monosomy 7, del(7q), trisomy 8 and del(20q). Leuk Res 2010 Apr;34(4):447–453. DOI: 10.1016/j.leukres.2009.08.023.
  61. Mohamedali AM, Smith AE, et al. Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome. J Clin Oncol 2009;27(24):4002–4006. DOI: 10.1200/JCO.2009.22.6985.
  62. Nikoloski G, Langemeijer SM, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nature Genet 2010 Aug;42(8):665–667. DOI: 10.1038/ng.620.
  63. Jerez A, Gondek LP, et al. Topography, clinical and genomic correlates of 5q-myeloid malignancies revisited. J Clin Oncol 2012 Apr;30(12):1343–1349. DOI: 10.1200/JCO.2011.36.1824.
  64. Pellagatti A, Boultwood J. The molecular pathogenesis of the myelodysplastic syndromes. Eur J Hematol 2015 Jul;95(1):3–15. DOI: 10.1111/ejh.12515.
  65. Pellagatti A, Cazzola M, et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia 2010 Apr;24(4):756–764. DOI: 10.1038/leu.2010.31.
  66. Gerstung M, Pellagatti A, et al. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nat Commun 2015 Jan;6:5901. DOI: 10.1038/ncomms6901.
  67. Cargo CA, Rowbotham N, et al. Targeted sequencing identifies patients with preclinical MDS at high risk of disease progression. Blood 2015;126(21):2362–2365. DOI: 10.1182/blood-2015-08-663237.
  68. Xu X, Johnson EB, et al. The advantage of using SNP-array in clinical testing for hematological malignancies – a comparative study of three genetic testing methods. Cancer Genet 2013 Sep–Oct;206(9–10): 317–326. DOI: 10.1016/j.cancergen.2013.09.001.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.