Indian Journal of Respiratory Care

IJRC Email      Register      Login

VOLUME 7 , ISSUE 2 ( July-December, 2018 ) > List of Articles

REVIEW ARTICLE

Driving Pressure: Clinical Applications and Implications in the Intensive Care Units

Jithin K. Sreedharan, Jaber Saud Alqahtani

Keywords : Acute respiratory distress syndrome, driving pressure, lung injury, mechanical ventilation, ventilator.induced lung injury

Citation Information : Sreedharan JK, Alqahtani JS. Driving Pressure: Clinical Applications and Implications in the Intensive Care Units. Indian J Respir Care 2018; 7 (2):62-66.

DOI: 10.4103/ijrc.ijrc_12_18

License: CC BY-NC-SA 4.0

Published Online: 02-12-2022

Copyright Statement:  Copyright © 2018; Indian Journal of Respiratory Care.


Abstract

Acute respiratory distress syndrome (ARDS) is considered a frequent and serious lung disease that is continuously linked with an increase in both morbidity and mortality. Mechanical ventilation (MV) is considered as the gold standard therapy in the management of ARDS; although MV support is lifesaving, it is also associated with potentially harmful threats such as ventilator-induced lung injury (VILI). It is understood from the physiological background itself that VILI has a considerable impact on the prognosis of a patient. Therefore, the current studies show that focusing on key therapeutic elements causing over-distension of the available lung units is more imperative for indicating further damage than how much pressure is used to ventilate. In the past two decades, there has been an increasing trend toward using driving pressure (DP) in the management of ARDS patients in intensive care units (ICUs). Recent studies propose that measuring DP in ARDS patients, in addition to the other respiratory mechanics measurements, may support selecting and customizing appropriate ventilator parameters, which, in turn, improves patient outcomes and decreases mortality rate. Therefore, this review is intended to outline the physiological meaning of DP, the clinical measurement and application of DP and factors limiting DP. Furthermore, measuring DP in non-ARDS patients and recent clinical evidence for the use of DP in the ICUs will be discussed in detail.


HTML PDF Share
  1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in Intensive Care Units in 50 countries. JAMA 2016;315:788-800.
  2. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: The berlin definition. JAMA 2012;307:2526-33.
  3. Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L, et al. The “baby lung” became an adult. Intensive Care Med 2016;42:663-73.
  4. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974;110:556-65.
  5. Dreyfuss D, Saumon G. Ventilator-induced lung injury: Lessons from experimental studies. Am J Respir Crit Care Med 1998;157:294-323.
  6. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997;99:944-52.
  7. Greenfield LJ, Ebert PA, Benson DW. Effect of positive pressure ventilation on surface tension properties of lung extracts. Anesthesiology 1964;25:312-6.
  8. Muscedere JG, Mullen JB, Gan K, Slutsky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 1994;149:1327-34.
  9. Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988;137:1159-64.
  10. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013;369:2126-36.
  11. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301-8.
  12. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2007;175:160-6.
  13. Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2005;31:776-84.
  14. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372:747-55.
  15. Goligher EC, Ferguson ND, Brochard LJ. Clinical challenges in mechanical ventilation. Lancet 2016;387:1856-66.
  16. Chiumello D, Carlesso E, Brioni M, Cressoni M. Airway driving pressure and lung stress in ARDS patients. Crit Care 2016;20:276.
  17. Cortes-Puentes GA, Gard KE, Adams AB, Faltesek KA, Anderson CP, Dries DJ, et al. Value and limitations of transpulmonary pressure calculations during intra-abdominal hypertension. Crit Care Med 2013;41:1870-7.
  18. Talmor D, Sarge T, Malhotra A, O'Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008;359:2095-104.
  19. Vaporidi K, Xirouchaki N, Georgopoulos D. Should we care about driving pressure during assisted mechanical ventilation? J Intensive Crit Care 2017;3:2.
  20. Mauri T, Langer T, Zanella A, Grasselli G, Pesenti A. Extremely high transpulmonary pressure in a spontaneously breathing patient with early severe ARDS on ECMO. Intensive Care Med 2016;42:2101-3.
  21. Mauri T, Grasselli G, Suriano G, Eronia N, Spadaro S, Turrini C, et al. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology 2016;125:159-67.
  22. Barberis L, Manno E, Guérin C. Effect of end-inspiratory pause duration on plateau pressure in mechanically ventilated patients. Intensive Care Med 2003;29:130-4.
  23. Hotchkiss JR Jr., Blanch L, Murias G, Adams AB, Olson DA, Wangensteen OD, et al. Effects of decreased respiratory frequency on ventilator-induced lung injury. Am J Respir Crit Care Med 2000;161:463-8.
  24. Protti A, Maraffi T, Milesi M, Votta E, Santini A, Pugni P, et al. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med 2016;44:e838-45.
  25. Maeda Y, Fujino Y, Uchiyama A, Matsuura N, Mashimo T, Nishimura M, et al. Effects of peak inspiratory flow on development of ventilator-induced lung injury in rabbits. Anesthesiology 2004;101:722-8.
  26. Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med 2018;197:684-5.
  27. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363:1107-16.
  28. Beitler JR, Sands SA, Loring SH, Owens RL, Malhotra A, Spragg RG, et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: The BREATHE criteria. Intensive Care Med 2016;42:1427-36.
  29. Morán I, Bellapart J, Vari A, Mancebo J. Heat and moisture exchangers and heated humidifiers in acute lung injury/acute respiratory distress syndrome patients. Effects on respiratory mechanics and gas exchange. Intensive Care Med 2006;32:524-31.
  30. Devaquet J, Jonson B, Niklason L, Si Larbi AG, Uttman L, Aboab J, et al. Effects of inspiratory pause on CO2 elimination and arterial PCO2 in acute lung injury. J Appl Physiol (1985) 2008;105:1944-9.
  31. Aguirre-Bermeo H, Morán I, Bottiroli M, Italiano S, Parrilla FJ, Plazolles E, et al. End-inspiratory pause prolongation in acute respiratory distress syndrome patients: Effects on gas exchange and mechanics. Ann Intensive Care 2016;6:81.
  32. Estenssoro E, Dubin A, Laffaire E, Canales H, Sáenz G, Moseinco M, et al. Incidence, clinical course, and outcome in 217 patients with acute respiratory distress syndrome. Crit Care Med 2002;30:2450-6.
  33. Baedorf Kassis E, Loring SH, Talmor D. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS. Intensive Care Med 2016;42:1206-13.
  34. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;368:2159-68.
  35. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010;363:1107-16.
  36. Guérin C, Papazian L, Reignier J, Ayzac L, Loundou A, Forel JM, et al. Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials. Crit Care 2016;20:384.
  37. Villar J, Martín-Rodríguez C, Domínguez-Berrot AM, Fernández L, Ferrando C, Soler JA, et al. A quantile analysis of plateau and driving pressures: Effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation. Crit Care Med 2017;45:843-50.
  38. Laffey JG, Bellani G, Pham T, Fan E, Madotto F, Bajwa EK, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: The LUNG SAFE study. Intensive Care Med 2016;42:1865-76.
  39. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, Laranjeira LN, Paisani DM, Damiani LP, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs. low PEEP on mortality in patients with acute respiratory distress syndrome: A Randomized clinical trial. JAMA 2017;318:1335-45.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.