Indian Journal of Respiratory Care

IJRC Email      Register      Login

VOLUME 6 , ISSUE 2 ( July-December, 2017 ) > List of Articles

REVIEW ARTICLE

Role of Physiotherapy in Weaning of Patients from Mechanical Ventilation in the Intensive Care Unit

Anup Bhat, Lenny T. Vasanthan, Abraham Samuel Babu

Keywords : Critical illness polyneuropathy, exercise, rehabilitation, targeted mobility, ventilator-induced diaphragmatic dysfunction

Citation Information : Bhat A, Vasanthan LT, Babu AS. Role of Physiotherapy in Weaning of Patients from Mechanical Ventilation in the Intensive Care Unit. Indian J Respir Care 2017; 6 (2):813-819.

DOI: 10.4103/ijrc.ijrc_8_17

License: CC BY-NC-SA 3.0

Published Online: 02-12-2022

Copyright Statement:  Copyright © 2017; Indian Journal of Respiratory Care.


Abstract

Admission to an Intensive Care Unit (ICU) initiates an interprofessional and interdisciplinary approach to bring the patient back to health with normal or near normal function. Physiotherapists play a vital role in restoring function to the patient. The role of physiotherapy (PT) in the ICU has moved from primarily being one of only respiratory care to one that also encompasses early rehabilitation and exercise training. Early mobilization in the ICU has gained prominence in the recent years and is becoming standard practice across many centers. However, the impact on weaning with these interventions is not known. This review highlights the dysfunctions from an ICU admission and the rationale for instituting early PT in the ICU. In addition, evidence from systematic reviews and meta-analysis is reviewed to determine the impact of PT interventions on weaning. Evidence suggests the benefit of active mobilization and inspiratory muscle training in facilitating weaning. In addition, these interventions along with neuromuscular electrical stimulation further improve physical function and reduce the risk of critical illness polyneuromyopathy. Therefore, early PT does have significant functional benefits to ICU patients. However, more studies are required to determine how various interventions and intensities of exercise training improve weaning outcomes.


HTML PDF Share
  1. Stiller K. Physiotherapy in intensive care: Towards an evidence-based practice. Chest 2000;118:1801-13.
  2. Stiller K. Physiotherapy in intensive care: An updated systematic review. Chest 2013;144:825-47.
  3. Dres M, Dubé BP, Mayaux J, Delemazure J, Reuter D, Brochard L, et al. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical Intensive Care Unit patients. Am J Respir Crit Care Med 2017;195:57-66.
  4. Jung B, Moury PH, Mahul M, de Jong A, Galia F, Prades A, et al. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med 2016;42:853-61.
  5. De Jonghe B, Bastuji-Garin S, Durand MC, Malissin I, Rodrigues P, Cerf C, et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med 2007;35:2007-15.
  6. Doherty N, Steen CD. Critical illness polyneuromyopathy (CIPNM); rehabilitation during critical illness. Therapeutic options in nursing to promote recovery: A review of the literature. Intensive Crit Care Nurs 2010;26:353-62.
  7. Samosawala NR, Vaishali K, Kalyana BC. Measurement of muscle strength with handheld dynamometer in Intensive Care Unit. Indian J Crit Care Med 2016;20:21-6.
  8. Angus DC, Carlet J; Brussels Roundtable Participants. Surviving intensive care: A report from the 2002 Brussels Roundtable. Intensive Care Med 2003;29:368-77.
  9. Babu AS. Critical care rehabilitation: A neglected part of ICU care. Oman Med J 2012;27:268.
  10. Kumar JA, Maiya AG, Pereira D. Role of physiotherapists in Intensive Care Units of India: A multicenter survey. Indian J Crit Care Med 2008;11:198-203.
  11. Thomas DC, Kreizman IJ, Melchiorre P, Ragnarsson KT. Rehabilitation of the patient with chronic critical illness. Crit Care Clin 2002;18:695-715.
  12. Parry SM, Puthucheary ZA. The impact of extended bed rest on the musculoskeletal system in the critical care environment. Extrem Physiol Med 2015;4:16.
  13. Desai SV, Law TJ, Needham DM. Long-term complications of critical care. Crit Care Med 2011;39:371-9.
  14. Petrof BJ, Jaber S, Matecki S. Ventilator-induced diaphragmatic dysfunction. Curr Opin Crit Care 2010;16:19-25.
  15. Chambers MA, Moylan JS, Reid MB. Physical inactivity and muscle weakness in the critically ill. Crit Care Med 2009;37 10 Suppl:S337-46.
  16. Truong AD, Fan E, Brower RG, Needham DM. Bench-to-bedside review: Mobilizing patients in the Intensive Care Unit – From pathophysiology to clinical trials. Crit Care 2009;13:216.
  17. Heinonen I, Kalliokoski KK, Hannukainen JC, Duncker DJ, Nuutila P, Knuuti J. Organ-specific physiological responses to acute physical exercise and long-term training in humans. Physiology (Bethesda) 2014;29:421-36.
  18. Ahmadizad S, Avansar AS, Ebrahim K, Avandi M, Ghasemikaram M. The effects of short-term high-intensity interval training vs. moderate-intensity continuous training on plasma levels of nesfatin-1 and inflammatory markers. Horm Mol Biol Clin Investig 2015;21:165-73.
  19. Swardfager W, Herrmann N, Cornish S, Mazereeuw G, Marzolini S, Sham L, et al. Exercise intervention and inflammatory markers in coronary artery disease: A meta-analysis. Am Heart J 2012;163:666-76.e1-3.
  20. Pearson MJ, Smart NA. Aerobic training intensity for improved endothelial function in heart failure patients: A systematic review and meta-analysis. Cardiol Res Pract 2017;2017:2450202.
  21. National Institute for Health and Clinical Excellence. Rehabilitation After Critical Illness. London: National Institute for Health and Clinical Excellence; 2009.
  22. Babu AS, Shanbhag V, Maiya AG. Mobilization in ICU. In: Gurujar M, editor. Manual of ICU Procedures. 1st ed., Ch. 57. Delhi: Jaypee Brothers Medical Publishers (P) Ltd.; 2016. p. 574-86.
  23. Hanekom S, Gosselink R, Dean E, van Aswegen H, Roos R, Ambrosino N, et al. The development of a clinical management algorithm for early physical activity and mobilization of critically ill patients: Synthesis of evidence and expert opinion and its translation into practice. Clin Rehabil 2011;25:771-87.
  24. Ghosh G, Bhat A, Babu AS. Current trend of research in critical care physiotherapy. Manipal: Manipal University; 2017. [Unpublished].
  25. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev 2016;5:210.
  26. Delaney A, Gray H, Laupland KB, Zuege DJ. Kinetic bed therapy to prevent nosocomial pneumonia in mechanically ventilated patients: A systematic review and meta-analysis. Crit Care 2006;10:R70.
  27. Moodie L, Reeve J, Elkins M. Inspiratory muscle training increases inspiratory muscle strength in patients weaning from mechanical ventilation: A systematic review. J Physiother 2011;57:213-21.
  28. Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G. Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database of Systematic Reviews 2014;(1):CD006832. DOI: 10.1002/14651858.CD006832.pub3.
  29. Wageck B, Nunes GS, Silva FL, Damasceno MC, de Noronha M. Application and effects of neuromuscular electrical stimulation in critically ill patients: Systematic review. Med Intensiva 2014;38:444-54.
  30. Elkins M, Dentice R. Inspiratory muscle training facilitates weaning from mechanical ventilation among patients in the Intensive Care Unit: A systematic review. J Physiother 2015;61:125-34.
  31. Burke D, Gorman E, Stokes D, Lennon O. An evaluation of neuromuscular electrical stimulation in critical care using the ICF framework: A systematic review and meta-analysis. Clin Respir J 2016;10:407-20.
  32. Li Z, Peng X, Zhu B, Zhang Y, Xi X. Active mobilization for mechanically ventilated patients: A systematic review. Arch Phys Med Rehabil 2013;94:551-61.
  33. Volpe MS, Aleixo AA, Almeida PR. Influence of inspiratory muscle training on weaning patients from mechanical ventilation: A systematic review. Fisioter Mov 2016;29:173-82.
  34. Geddes EL, Reid WD, Crowe J, O’Brien K, Brooks D. Inspiratory muscle training in adults with chronic obstructive pulmonary disease: A systematic review. Respir Med 2005;99:1440-58.
  35. Lin SJ, McElfresh J, Hall B, Bloom R, Farrell K. Inspiratory muscle training in patients with heart failure: A systematic review. Cardiopulm Phys Ther J 2012;23:29-36.
  36. Caruso P, Denari SD, Ruiz SA, Bernal KG, Manfrin GM, Friedrich C, et al. Inspiratory muscle training is ineffective in mechanically ventilated critically ill patients. Clinics (Sao Paulo) 2005;60:479-84.
  37. Elbouhy MS, AbdelHalim HA, Hashem AM. Effect of respiratory muscles training in weaning of mechanically ventilated COPD patients. Egypt J Chest Dis Tuberc 2014;63:679-87.
  38. Hodgson CL, Berney S, Harrold M, Saxena M, Bellomo R. Clinical review: Early patient mobilization in the ICU. Crit Care 2013;17:207.
  39. Garzon-Serrano J, Ryan C, Waak K, Hirschberg R, Tully S, Bittner EA, et al. Early mobilization in critically ill patients: Patients’ mobilization level depends on health care provider’s profession. PM R 2011;3:307-13.
  40. Nydahl P, Ruhl AP, Bartoszek G, Dubb R, Filipovic S, Flohr HJ, et al. Early mobilization of mechanically ventilated patients: A 1-day point-prevalence study in Germany. Crit Care Med 2014;42:1178-86.
  41. Strickland SL, Rubin BK, Drescher GS, Haas CF, O’Malley CA, Volsko TA, et al. AARC clinical practice guideline: Effectiveness of nonpharmacologic airway clearance therapies in hospitalized patients. Respir Care 2013;58:2187-93.
  42. Ntoumenopoulos G, Gild A, Cooper DJ. The effect of manual lung hyperinflation and postural drainage on pulmonary complications in mechanically ventilated trauma patients. Anaesth Intensive Care 1998;26:492-6.
  43. Pattanshetty RB, Gaude GS. Effect of multimodality chest physiotherapy in prevention of ventilator-associated pneumonia: A randomized clinical trial. Indian J Crit Care Med 2010;14:70-6.
  44. Berti JS, Tonon E, Ronchi CF, Berti HW, Stefano LM, Gut AL, et al. Manual hyperinflation combined with expiratory rib cage compression for reduction of length of ICU stay in critically ill patients on mechanical ventilation. J Bras Pneumol 2012;38:477-86.
  45. Gutierrez CJ, Stevens C, Merritt J, Pope C, Tanasescu M, Curtiss G. Trendelenburg chest optimization prolongs spontaneous breathing trials in ventilator-dependent patients with low cervical spinal cord injury. J Rehabil Res Dev 2010;47:261-72.
  46. Templeton M, Palazzo MG. Chest physiotherapy prolongs duration of ventilation in the critically ill ventilated for more than 48 hours. Intensive Care Med 2007;33:1938-45.
  47. Hewitt N, Bucknall T, Faraone NM. Lateral positioning for critically ill adult patients. Cochrane Database of Systematic Reviews 2016;(5):CD007205. DOI: 10.1002/14651858.CD007205.pub2.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.