Unilateral Ectasia characterized by Advanced Diagostic Tests

ABSTRACT

To describe a case of very asymmetric ectasia successfully treated by femtosecond laser-assisted intracorneal ring segment implantation, in which the diagnosis of unilateral ectasia in the right eye was based on the clinical findings including history, follow-up, and advanced diagnostic data. The patient’s history was positive for ocular allergy with moderate-to-intense eye rubbing only in the right eye. The uncorrected distance visual acuity was 20/63 in the right eye and 20/32 in the left eye. The corrected distance visual acuity (CDVA) was 20/40 in the right eye (−1.75−4.00 × 35°) and 20/16 in the left eye (−0.50−0.25 × 115°). After femtosecond laser-assisted intracorneal ring segment implantation, the right eye improved CDVA to 20/20−1°. Concerning ectasia/keratoconus diagnosis, the left eye remained stable over 1 year of follow-up with remarkable topometric, tomographic, and biomechanical findings. Epithelial thickness mapping by spectral domain optical coherence tomography and very-high-frequency digital ultrasound demonstrated epithelial thickness within normal limits in the left eye. Advanced diagnostic methods along with clinical data enable the distinction from unilateral ectasia cases and subclinical (fruste) keratoconus. Literature review is also performed along with case presentation and discussion.

Keywords: Corneal tomography, Keratoconus, Unilateral ectasia.

INTRODUCTION

Keratoconus is the most common ectatic corneal disorder, which typically presents bilaterally but at times can present with a high degree of asymmetry.1,2 Interestingly, some cases with very high asymmetry between eyes may present with a relatively normal corneal front surface curvature in the less affected eye. Such cases have previously been reported as “unilateral keratoconus” with an incidence ranging between 1 and 4%.3,6 However, both the pan-American and global consensus on keratoconus and corneal ectatic diseases concluded that “true unilateral keratoconus does not exist” based on the assumption there is a genotype for this condition, albeit with incomplete penetrance.7,8 In fact, Klyce9 referred such fellow eyes with normal topography as “forme fruste keratoconus,” instead of “unilateral keratoconus” cases. Forme fruste keratoconus was originally coined by Amsler10 for...
describing the incomplete or abortive form of the disease that may or may not progress, mostly depending on external influences, to the full-blown (forme plaine) disease at some point in the future. As Amsler10 demonstrated using predigital photokeratoscopy analysis, other longitudinal studies have demonstrated that many of Forme fruste keratoconus fellow eyes progressed to true keratoconus over the long term. For example, Suzuki et al14 found that 20% of eyes progressed within 6 years.

There are, however, some cases in which the ectatic process only occurs in one eye, having no feature of ectatic corneal disease in the fellow eye. For such cases, there was consensus that secondary (induced) ectasia may be caused by a pure mechanical process.7,8 These concepts are based on the current two-hit hypothesis that proposes ectasia development can occur in patients with an underlying genetic predisposition, but only when coupled with external environmental factors,12 including eye rubbing,13,14 ocular trauma, rigid contact lens wear, and the weakening caused by keratorefractive surgery.15,16

The challenge is that distinguishing unilateral ectasia from very asymmetric keratoconus can only be proved by collecting longitudinal data to confirm whether ectasia progression will occur or not.5 It appears likely that some cases may simply not progress unless there is a significant destabilizing hit provided by an environmental stimulus. However, this is as distinct from a patient with keratoconus, in which the ectatic progression can occur without any external environmental factors, although such factors will obviously accelerate progression.

Advanced diagnostic corneal imaging technologies (e.g., corneal tomography) have been proven to augment the sensitivity to detect mild abnormalities related to ectasia16,17 and epithelial thickness mapping.18-20 When evaluating these diagnostic techniques, many researchers have used eyes with normal or relatively normal topographic findings from patients with very asymmetric ectasia, based on the assumption that keratoconus is a bilateral disease and therefore the fellow eye must have a mild form.21-27 These studies have proven to vary in results, with some demonstrating much higher diagnostic sensitivity than others; however, this may be due to the different criteria for defining abnormal front surface topography. Some studies included fellow eyes with some suspicious signs on topography,28 whereas others included only fellow eyes with normal topography.21-27 For example, a recent study by Reinstein et al27 found that only half of the fellow eyes with normal clinical and topographical evaluation from 10 patients with very asymmetric ectatic disease had detectable abnormalities characteristic of keratoconus by advanced diagnostic techniques, including epithelial thickness mapping.29 Belin-Ambrósio30 enhanced ectasia display, and the SCORE algorithm developed by Gatinel and Saad.21,31 It seems possible that at least some of these patients are more likely to be cases of unilateral secondary induced ectasia, or cases with false positive topography in the so-called affected eye, rather than patients with asymmetric keratoconus.

The current case report describes a patient with unilateral ectasia in which the exclusion of subclinical (or forme fruste) keratoconus was done based on extensive advanced diagnostic tests, along with a critical evaluation of clinical history.

CASE REPORT

A 39-year-old business executive was referred for specialized keratoconus treatment to VisareRio (Rio de Janeiro, Brazil). The patient complained of low vision in his right eye and reported ocular allergy with moderate-to-intense itching and eye rubbing only in the right eye. The uncorrected distance visual acuity was 20/63 in the right eye and 20/32 in the left eye. Wavefront-facilitated manifest refraction was −1.75−4.00 × 35° in the right eye and −0.50 −0.25 × 115° in the left eye. Corrected distance visual acuity (CDVA) was 20/40 in the right eye and 20/16 in the left eye.

Placido disk-based corneal topography was obtained by Keratograph 5 (Oculus, Wetzlar, Germany) and iTrace (Tracey Technologies, Houston, USA), and Scheimpflug corneal tomography was performed using the Pentacam HR (Oculus, Wetzlar, Germany). Front surface curvature maps by Placido (Figs 1A, B and 2) were identical to those generated by rotating Scheimpflug corneal topography (Figs 1C and D) in both eyes. A marked irregularity with steep and truncated bowtie and skewed radial axis was noted in the right eye (Figs 1A, C and 2A). The left eye had a relatively normal asphericity with low astigmatism (Figs 1B, D and 2B). Oculus topometric keratoconus classification (TKC)32,33 was consistent with grade 2 keratoconus in the right eye and had no similarity with ectatic disease in the left eye. The Belin ABCD keratoconus staging was A2B2C0D1 in the right eye and A0B0C0D0 in the left eye34 was determined.

Ocular wavefront analysis was done by the iTrace (Figs 2C and D), demonstrating a similar pattern of irregularity as seen on front surface curvature in the right eye. Central wavefront refraction was −0.75−4.25 × 35° in the right eye and −0.37−0.12 × 24° in the left eye. The total high-order aberrations (HOAs) were 0.472 μm in the right eye and 0.999 μm in the left eye for 3.2 mm pupil diameter scan.

Figures 3 and 4 include the enhanced tomographic evaluation by Pentacam HR for OD and OS respectively. Figure 3 revealed an ectatic pattern in the elevation maps for the front and back surfaces in the right eye. Pachymetric distribution graphs (corneal thickness special profile and percentage of thickness increase)35 demonstrated a

41
Figs 1A to D: Keratograph 5 (A and B), and Pentacam HR (C and D) front surface axial curvature (topometric) maps, including Belin ABCD keratoconus staging.
Unilateral Ectasia characterized by Advanced Diagnostic Tests

 pattern of abrupt increase in thickness from the thinnest point outward in the right eye (Fig. 3). In the right eye, the elevation for a best-fit sphere in an 8-mm zone in the location of the thinnest point was 18 µm for the front surface and 47 µm for the back surface. Elevation and pachymetric maps, along with pachymetric distribution graphs, were unremarkably normal in the left eye (Fig. 4). ARTmax (Ambrósio Relational Thickness to the meridian with maximal pachymetric increase) was 240 µm in the right eye and 535 µm in the left eye.36 BAD-D version 3 (Belin-Ambrósio Deviation index) was 5.25 in the right eye and 0.25 in the left eye.

Figure 5 illustrates the layered pachymetric mapping by spectral domain optical coherence tomography (OCT) done using the RTVue (Optovue; Fremont, CA, USA). The total pachymetric map findings were similar to those generated by Pentacam HR. The thinnest value was displaced toward the inferotemporal quadrant in both eyes. The minimum pachymetry in the right eye was 539 µm by OCT and 537 µm by Scheimpflug, whereas

Figs 2A to D: iTrace summary with axial curvature (A and B), and ocular wavefront data (C and D)
Fig. 3: Enhanced ectasia display from OD

Fig. 4: Enhanced ectasia display from OS
Unilateral Ectasia characterized by Advanced Diagnostic Tests

The minimum pachymetry in the left eye was 578 µm by OCT and 590 µm by Scheimpflug. In the right eye, the epithelial thickness map provided by OCT demonstrated a region of thinner epithelium inferotemporally, surrounded by thicker epithelium, and was coincident with the thinnest area on pachymetry and the apex on front and back surface elevation maps. The epithelial thickness map was found to be relatively normal in the left eye.

Corneal endothelium was evaluated by specular microscopy (Tomey; Nagaya, Japan) with a normal mosaic and central count of 2,495 cells/mm² in the right eye and 2,590 cells/mm² in the left eye. The Ocular Response Analyzer (ORA; Reichert, Buffalo, NY, USA) and Corvis ST (Oculus, Wetzlar, Germany) (Figs 6A and B) were used to assess ocular biomechanical properties. A relatively low-signal applanation response was observed in the right eye and a normal response was observed in the left eye. Corneal hysteresis (CH) and corneal resistance factor (CRF) were 8.8 and 8.1 mm Hg in the right eye and 12.1 and 12.0 mm Hg in the left eye.

The diagnosis of unilateral ectasia in the right eye was based on the clinical findings along with tomographic data from both eyes. Considering the patient's symptoms and clinical findings, the treatment plan was to implant intracorneal ring segments (ICRSs) assisted by femtosecond laser in the right eye. Based on the Mediphacos nomogram 4.0 (Belo Horizonte, Brazil), one segment of Keraring S16 150° with 250 µm was implanted temporally with an incision at the steepest meridian with depth calculated at 80% of minimal pachymetric value. The FS-200 femtosecond laser (Alcon-WaveLight; Earlagen, Germany) was used to create tunnels. Surgical procedure and postoperative period occurred with no complications.
The patient noticed an improvement in his quality of vision since 1 week after surgery. Six weeks after surgery, the ICRS was in position without ocular inflammation (Fig. 7). Uncorrected distance visual acuity was 20/50- and manifest refraction was $-2.00-0.50 \times 140^\circ$, giving CDVA of 20/20. A marked improvement in corneal irregularity was noted on corneal topography (Fig. 8). The main keratometric changes in this eye were the decrease in K_{max} from 51.0D to 47.8D and keratometric central astigmatism from 4.6DC to 0.2DC in the right eye (Fig. 8).

The patient moved to London, UK, due to his career and was referred to the London Vision Clinic for clinical follow-up with Prof. Dan Z. Reinstein. One year after surgery, he presented with relatively stable clinical findings in both eyes accordingly to his last examination. Corrected distance visual acuity was 20/20-1 in the right eye and 20/16 left eye. In this visit,
Unilateral Ectasia characterized by Advanced Diagnostic Tests

An extensive clinical examination was performed. The left eye remained stable with similar findings as reported in the first visit. The examination also included a scan using the Artemis very-high-frequency digital ultrasound scanner (VHF-US; ArcScan Inc, Golden, CO, USA). Figures 9 and 10 present the VHF-US layered pachymetry data for the right and left eyes respectively. In this analysis, epithelial, stromal, and total corneal thickness maps are presented along with the calculated standard deviation from normality of the epithelial and stromal thickness. In the right eye, a large arc can be seen temporally where the stromal thickness has increased due to the intracorneal ring segment. The distortion of the front surface of the stroma due to the ring is compensated for by epithelial remodeling with thinning to 44 µm directly over the ring and thickening to 99 µm adjacent to the ring. In the left eye, the epithelial thickness profile appeared normal with slightly thinner epithelium superiorly as previously described for normal population. The machine-based identification of keratoconus algorithm as described by Silverman et al found the epithelial thickness for the left eye to be within the normal range. These data were in agreement with Pentacam HR, RTVue, and Placido-disk-based topography findings, which were found to be stable for the previous year. Orbscan (TECHNOLAS Perfect Vision; Munich, Germany) analysis was provided using the SCORE analyzer in the left eye (Fig. 11), with a score value of −0.5, which indicates negative for detecting ectasia.

Fig. 7: Slit-lamp biomicroscopy of the right eye 6 weeks after femtosecond intracorneal ring segment

Fig. 8: Comparative corneal topography OD
Ocular biomechanical assessment was repeated with the ORA, finding CH and CRF of 10.3 and 10.2 mm Hg in the right eye and 12.2 and 12.0 mm Hg in the left eye. The ORA-KMI (keratoconus match index) was 0.6 in the right eye and 0.69 in the left eye.

DISCUSSION

The diagnosis of very mild or subclinical ectatic corneal disease remains a relative challenge for corneal and refractive surgery specialists. In this context, the highly asymmetric cases present as a very interesting subgroup.
for diagnostic studies. However, while there was pan-American and global consensus that true unilateral keratoconus does not exist, there is also consensus that secondary (induced) ectasia, caused by a pure mechanical process, may occur unilaterally.7,8 Thereby, some of the very asymmetric cases may actually have unilateral disease. This may raise a significant limitation for studies that involve very asymmetric ectasia cases for developing more advanced diagnostic methods for detecting mild ectatic disease before becoming apparent by front surface curvature changes.21-26 However, the ideal study should consider longitudinal data, as previously done by Amsler in 1938.10,44 In addition, the retrospective evaluation of cases that developed ectasia after refractive surgery should be deliberated, considering the preoperative corneal characteristics and the impact from the procedure, including having a residual stromal bed over 250 µm.45 In fact, screening for ectasia risk prior to keratorefractive surgery aims to assess the amount of cornea susceptibility for biomechanical decompensation, not only detecting corneal ectatic diseases.16

This report illustrates and characterizes a unilateral corneal ectasia case. Advanced diagnostic methods, such as corneal tomography, have enabled the identification of subclinical ectatic diseases prior to loss of CDVA and other clinical signs that present late in the development of the disease.46 Application of the most modern diagnostic techniques found no evidence for ectasia in the fellow left eye. While the limitations of subjective classification were highlighted in a previous study,23 it is fundamental to go beyond front surface (topometric) evaluation for assessing ectasia risk or susceptibility. Corneal tomography refers to the three-dimensional reconstruction of corneal shape, characterizing front and back surface elevations, and corneal thickness distribution.17 In this case, the left eye had rotating Scheimpflug30,32 and slit-scanning21 corneal tomography were unremarkably normal. In addition, epithelial thickness was within the normal range both by VHF-US and by spectral domain OCT.42 Corvis ST deformation parameters were considered relatively normal, and biomechanical assessment from ORA was relatively normal and stable between examinations 1 year apart.47 Clinical history provided fundamental information that the patient regularly rubbed his right eye, but did not rub his left eye. Therefore, the fact that the ectasia in the right eye could be explained by an external destabilizing environmental factor combined with the absence of any evidence for ectasia in the fellow eye indicates that the most likely diagnosis is secondary induced ectasia in the right eye (rather than asymmetric keratoconus with forme fruste disease), and that one would not expect the fellow eye to progress to ectasia without an equivalent external destabilizing event.

REFERENCES

