Odontoid Fractures: Management

1P Sai Sudarsan, 2I Dinakar

ABSTRACT

Odontoid fractures account for approximately 20% of all cervical fractures, majority of them being type II. Treatment of odontoid fractures is determined by multiple factors, including fracture type, presence of associated injuries, patient’s age and comorbidities. Majority of type I and III fractures do not warrant surgical correction. However, management of type II fractures still remains controversial. Of late internal fixation has become an accepted treatment. Multiple surgical options have been proposed. This article reviews various alternatives of treating odontoid fractures.

Keywords: Odontoid fractures, Transverse atlantal ligament, Posterior fixation, Trans articular screws, Odontoid screws.

Source of support: Nil

Conflict of interest: None

HISTORICAL PERSPECTIVE

Mixter and Osgood1 were the first to describe the management of odontoid fractures in 1910. Osgood and Lund2 published the first series of odontoid fractures in 1928. They reported a series of 55 cases. There was a very high incidence of mortality and morbidity in their series. Ten patients who were normal after the initial injury died subsequently following a trivial injury. They inferred that union in dens fracture was rare.

ANATOMY OF UPPER CERVICAL SPINE

The upper cervical spine consists of atlas and axis.3 The atlas articulates superiorly with occiput (atlantooccipital joint) and inferiorly with the axis (atlantoaxial joint). The atlantoaxial joint is responsible for 50% of all cervical rotation and the atlanto occipital joint is responsible for 50% of flexion and extension.

The atlas is ring shaped and does not have a body, unlike the rest of the vertebrae. Fused remnants of the atlas body have become part of C2 when it is called the odontoid process.4 The odontoid process is held in tight proximity to the posterior aspect of anterior arch of atlas by the transverse atlantal ligament. This ligament stabilizes the atlanto axial joint. The apical and alar ligaments provide further stabilization and prevent posterior displacement of the dens in relation to the atlas.

The axis has a large vertebral body, which contains the odontoid process. The odontoid process articulates with the anterior arch of the atlas via its anterior articular facet and is held in place by the transverse ligament. The axis articulates with the atlas with its superior articular facets.

EMBRYOLOGY

The axis has a very complex embryologic development. It is derived from 4 ossification centers, one for the body, one for the odontoid process and two for the neural arches.5 The odontoid process fuses by the seventh gestational month. At birth a vestigial cartilaginous disk space called the neuro central synchondrosis separates the odontoid process from the body of the axis.4 The synchondrosis is seen in all children around 3 years and disappears at around 6 years.5 It should not be confused with a fracture. The apical portion of dens ossifies by about 4 years and fuses with the rest of the structures around 12 years of age.5

VASCULATURE

Dens has an extensive arterial anastomotic network, fed by the paired anterior and posterior ascending arteries arising from the vertebral and the carotid arterial arcade from the skull base. The anastomotic arcade also receives tributaries from the ascending pharyngeal arteries.4,6

LIGAMENTS

The external and internal ligaments secure the atlantoaxial joints. The external ligaments are the atlantooccipital and anterior longitudinal ligaments. The internal ligaments have five components (Fig. 1):

1. The transverse ligament is the major stabilizing ligament of the atlantoaxial joint. It holds the odontoid process in place against the posterior atlas.7

2 and 3. Alar ligaments attach the axis to the base of the skull.8 They function as stabilizing structures and act to limit axial rotation and lateral bending on the contralateral side.9

1Head, 2Consultant
1Department of Neurosurgery, Star Institute of Neurosciences Hyderabad, Telangana, India
2Department of Neurosurgery, Yashoda Hospital, Secunderabad Telangana, India

Corresponding Author: P Sai Sudarsan, Head, Department of Neurosurgery, Star Institute of Neurosciences, Banjara Hills Hyderabad-500034, Telangana, India, e-mail: sudarsan63@gmail.com
4. Apical ligament attaches the tip of the odontoid process to the basion. It also adds to the stability of the cranio vertebral junction.

5. Tectorial membrane is a well-developed superior continuation of the deeper layer of the posterior longitudinal ligament. It restricts the extension at the atlantooccipital joint and flexion/extension at the atlantoaxial joint.

These ligaments play a vital role in maintaining structural stability of the upper cervical spine. A thorough working knowledge of this anatomy is therefore important.

CLASSIFICATION

Anderson and D’Alonzo in 1974 classified the odontoid fractures (Fig. 2). Their study was based on a detailed analysis of 60 patients. Their classification still holds good. They identified 3 types of fractures based on the anatomic location of the fracture line. Type I is an oblique fracture through the upper part of the odontoid process. It represents an avulsion fracture where the alar ligament attaches to the tip of the odontoid process. Type II is a fracture occurring at the junction of the odontoid process with the body of the second cervical vertebra. Type III is a fracture line that extends downwards into the cancellous portion of the body and is really a fracture through the body of the axis. Each subtype is further classified as displaced or undisplaced. This was modified by Hadley et al. They described the type II A fracture where there is an additional chip fracture at the anterior or posterior aspect of the base of the dens. This modification is significant, because this fracture subtype is very unstable and results in nonunion, whatever be the direction of initial dens displacement. This subset of fractures should be considered for early surgical stabilization. They account for 5% of type II fractures.

Grauer et al proposed a modified classification of odontoid fractures in 2005, stressing on fracture management. The type II and III of the Anderson and D’Alonzo were redefined based on the involvement of superior articular facet. According to Grauer et al in type II fracture the superior articular facet was spared where as type III fractures involved the superior articular facet. They further subclassified the type II fractures. In type II subtype A the displacement was less than 1 mm with no comminution. In type II subtype B the fracture line passes from antero superior to postero inferior with a displacement of more than 1 mm. It is ideal for anterior screw fixation. The fracture line in type II subtype C passes from antero inferior to postero superior or there may be significant comminution of dens. This subtype is treated with posterior atlanto axial fixation. Their analysis did not assess their classification with respect to treatment.

INCIDENCE

Odontoid fractures are the most common fractures of the axis. In the Greene et al series of 340 fractures, odontoid fractures accounted for 199 of the axis fractures, accounting for 59%. The type I is the least prevalent. It accounted for only 1% of all odontoid fractures in Greene et al series. Anderson and D’Alonzo found the incidence to be 3% in their series of 60 dens fractures. The type II dens fracture is the most common (Figs 3A and B). It accounted for 60% in Greene et al series and 54% in Anderson and D’Alonzo series. The type III odontoid fracture was second common amounting to 39% in Greene et al and 42% in Anderson and D’Alonzo reviews respectively.

MANAGEMENT

The cervical spine research society in 1985 published a multi center review regarding management of odontoid frac-

<table>
<thead>
<tr>
<th>Anderson and D’Alonzo</th>
<th>Hadley</th>
<th>Grauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Type I</td>
<td>Type I</td>
</tr>
<tr>
<td>Type II</td>
<td>Type II</td>
<td>Type II</td>
</tr>
<tr>
<td>Type III</td>
<td>Type III</td>
<td>Type III</td>
</tr>
<tr>
<td>Type II A</td>
<td>Type II A</td>
<td>Type II A</td>
</tr>
<tr>
<td>Type II B</td>
<td>Type II B</td>
<td>Type II B</td>
</tr>
<tr>
<td>Type III A</td>
<td>Type III A</td>
<td>Type III A</td>
</tr>
<tr>
<td>Type III B</td>
<td>Type III B</td>
<td>Type III B</td>
</tr>
<tr>
<td>Type III C</td>
<td>Type III C</td>
<td>Type III C</td>
</tr>
</tbody>
</table>

Fig. 1: Schematic representation of ligaments of craniovertebral junction

Fig. 2: Odontoid fractures depicted in a picture
In a series by Clark and White, the incidence of non-union and a 40% incidence of mal-union type I fractures. But in type III fractures, there was a 10% incidence of non-union and 100% fracture healing and stability was documented in post immobilization flexion and extension imaging in type III fractures. The same study documented a fusion rate of only 53% in type II fractures. In another study by Wang et al the fusion rate in type II fractures was only 57%.

HALO DEVICE IMMOBILIZATION

Greene et al managed 2 cases with type I fracture using halo immobilization and they obtained good bony fusion in 12 weeks. Similar results were seen by Julien et al analysis in a review of 9 case series. In this 9 case series, there were 3 cases of type I fractures and all had good bony fusion with halo immobilization. Sixty-nine patients with type III fractures were managed with halo immobilization in Greene et al series. They obtained good bony fusion in 68 patients with 1.4% nonunion. Polin et al reported 100% bony union in 13 cases of type III fractures. In Julien et al analysis the union rate was 84%. Seven cases in this analysis had mal union and non union was documented in 6 cases. This experience suggests that rigid immobilization alone is an effective management strategy in both type I and III odontoid fractures.

Results in type II fracture group did not match those of type I and III groups. In all the series reviewed the failure rate was close to 30% in type II fractures. The high incidence of non union in type II fractures can be explained by the embryological development of the axis as a whole. The axis as a unit is supplied by 2 vascular arcades as described by Schiff and Park in 1973. One arcade supplies the body of the axis and another arcade supplies the tip of the dens as summarized by Maiman and Larson. The base of the dens is relatively avascular. Vascularity becomes more compromised after fracture with displacement. Added to this, the dens are enveloped in a synovium and there is no periosteal blood supply. Another reason for non union is the orientation of the apical ligament. Following a fracture there is a distraction effect at the fracture plane leading to non union.

Non union rates are very high in type II fractures where there is an additional chip fracture at the base of the dens. These cases should be considered for early surgery. Hadley et al in 1985 reported that non union rate was very high in type II fractures with dens displacement of more than 6 mm. They reported a non union rate of 67% compared to 26% in cases where the dens displacement was less than 6 mm. This relationship was further confirmed by Greene et al in 1997. Several other investigators also found a negative correlation between healing and dens displacement.

Lennarson et al found a good correlation with age. They evaluated patients with isolated type II odontoid fractures and found that nonunion was very high in patients above 50 years. It was 21 times high when compared to the group in post immobilization flexion and extension imaging in type III fractures.
below 50 years. Patients’ sex, degree of fracture displacement, direction of displacement, duration of hospital stay did not show any significant effect on outcome in their study.\(^{32}\)

SURGERY FOR ODONTOID FRACTURES

Posterior approach was the mainstay in the surgical treatment for many decades. In 1910, Mixter and Osgood\(^{1}\) reported the first surgery for odontoid fractures. In 1939, Gallie\(^{33}\) described the first wire and bone technique. Since then many similar constructs have been tried with relative success. Inter laminar clamps were introduced by Tucker\(^{34}\) in 1975. Magerl\(^{35}\) in 1979 developed the atlanto axial screw technique via a dorsal trans articular approach. In 1981, Bohler\(^{36}\) described an osteo synthesis technique through anterior route. Goel\(^{37}\) et al in 1994 and Harms and Melcher\(^{38}\) in 2011 described a C1 lateral mass and C2 pedicle screw and rod technique. In 2004, Wright\(^{39}\) described a poly axial screw and rod technique.

POSTERIOR CERVICAL STABILIZATION

Stainless steel was long the alloy of choice in spinal instrumentation because of its strength and suppleness. Traditionally monofilament stainless steel was used. Subsequently braided titanium cables have replaced steel. Their main disadvantage is they can cut through the bone.

GALLIE FUSION

This is a C1-C2 arthrodesis. A notched bone graft is placed between the posterior arch of atlas and superior part of C2 spine. The graft is secured with a C1 sub laminar wire that winds around the C2 spinous process. It is a solitary midline fixation and fusion construct susceptible to rotational forces.

BROOKS AND JENKINS FUSION

Brooks and Jenkins\(^{40}\) in 1978 described a construct to overcome the rotational deficiency of Gallie fusion. They used a bilateral inter laminar bone grafts and bilateral sub laminar wires. Griswold et al\(^{41}\) modified this by using 2 sub laminar wires on either side. This technique increased the risk of neurological deficit.

SONNTAG’S MODIFICATION OF GALLIE FUSION

In this modification, a bi cortical bone graft is wedged between the decorticated inferior edge of C1 lamina and decorticated superior edge of C2 lamina and spinous process. Wires are passed just as in Gallie fusion. The graft is vertically oriented and provides immediate segmental stability. The bone to bone contact is cancellous and this aids in excellent fusion. The wire contact is better and the stability is assured in all the 3 planes. Since, there is no sublaminar wire under the C2 the neurological deficits are lesser compared to Brooke fusion.

EFFECTIVENESS OF WIRE FIXATION

There have been many retrospective analysis of wire-bone techniques.\(^{19,24-26,28,30,42,43}\) The over all fusion rates in type II fracture was 87% and 100% in type III fractures. One series of Maiman and Larson\(^{28}\) documented a fusion rate of only 35% at the dens fracture line, but the dorsal fusion rate was 100%. In all the analyzed cases of these series postoperative immobilization was done with Halo vest device.

HALIFAX CLAMP ARTHRODESIS

They were described by Tucker\(^{34}\) in 1975. This method avoids sub laminar wires and immediate stabilization is provided by compression over the graft. The odontoid could be dorsally angulated with compression leading to ventral compression over the spinal cord. There were many other complications and this method went out of vogue. Statham et al\(^{44}\) reported complications in 14 of 45 patients they studied. Twenty percent needed reoperation. In contrast Huang and Chen\(^{45}\) achieved good fusion in all the patients. They combined clamp arthrodesis with Halo vest immobilization.

TRANS ARTICULAR SCREW FIXATION

This was first described by Magerl.\(^{35}\) This method provides immediate rigid stabilization of C1-C2 complex. This can be re-enforced with Soontag modified Gallie arthrodesis. Vertebral artery trajectory should be predetermined since about 20% population have an anomalous vertebral artery trajectory at this level.\(^{46}\) Fluoroscopy is very useful during this procedure. The entry point on C2 is 2 mm lateral from the medial edge of the facet and 3 mm superior to the caudal edge. The trajectory is straight up across the C1 and C2 articular surfaces and into the lateral mass of C1. The surgeon can use a probe to palpate the medial surface of the C2 pedicle for assistance. The exit point should be in the posterior third of superior surface of C2 facet. If the vertebral artery bleeding is encountered, opposite side should not be attempted. A lag screw will help in reducing the distracted joint. The success rate of bony fusion with Magerl technique is approximately 90% with a reported success between 78 and 99%.\(^{47-53}\) The vertebral artery injury during this technique is reported to be between 3.7 and 8.2%.\(^{47,48,51,54}\)

GOEL AND LAHERI/HARMS AND MELCHER FIXATION

Goel and Laher\(^{55}\) first described the lateral mass screws in C1 and pedicle screws in C2 with plate fixation in 1994 and the same technique was described by Harms and Melcher\(^{38}\) in 2001 with poly axial screws and rods (Fig. 4). Goel and Laher further described distraction of C1-C2 joint space with spacers. Resnick and Benzelt\(^{56}\) further modified the Harms...
and Melcher technique with C1 and C2 pedicle screws. This method of atlanto axial stabilization is the procedure of choice for immediate C1-C2 stabilization. In Goel et al37 series, 160 patients were operated with a bony fusion of 100\%. Harmes and Melcher38 also reported a 100\% fusion rate in their series of 37 patients. There was no vertebral artery injury or spinal cord injury in both the series. Aryan et al57 treated 102 patients with C1-C2 instability with 98\% fusion rates. They used a distraction technique by placing an allograft into the decorticated C1-C2 joint in 39 cases in their series.

CROSSED C2 INTRALAMINAR SCREWS

In 2004, Wright39 described a technique involving the use of poly axial screws inserted into the lamina of C2 in a crossing fashion. These screws are secured to C1 lateral mass screws. C2 laminar screws do not damage the vertebral arteries and thus can be used as a rescue technique should the vertebral artery be compromised. The laminar screws enter at the spinolaminar junction of the opposite lamina at which they will be placed. The screw intended for the right lamina enters the left lamina and its poly axial head is on the left side. One side should be inserted at the rostral end of the lamina and the opposite side, the caudal end of the lamina. Wright39 and Menendez and Wright58 separately reported 100\% fusion rates with no complications. However, the authors warn that this newer technique needs further study before widespread implementation.

BIOMECHANICS IN POSTERIOR ARTHRODESIS

Dickman et al59 compared the biomechanics of all C1-C2 cable fixations. All the techniques were compared and each of the constructs was subjected to fatigue. None of the cable techniques were found to be rigid in all directions. They all allowed considerable rotation and translation. Modified Brooks and Jenkins and the Sonntag interspinous techniques provided better fixation than Gallie technique. The authors opined that additional support to C1-C2 wiring techniques in the form of rigid cervical collar, halo vest or internal fixation like trans articular screw will have a long-term benefit.

Naderi et al60 evaluated the biomechanics of different C1-C2 constructs. They found that interspinous cable graft provided superior restriction of the angular motion of flexion and extension, but provided limited rotational and lateral bending stabilization. The bilateral trans articular screw fixation device gave the best rotational and lateral bending stabilization but was not very effective in limiting flexion and extension movements. The most stable construct in their findings was the combination of 3 point fixation model of C1-C2 interspinous cable graft with bilateral trans articular screws.

Richter et al61 compared the biomechanics of different C1-C2 internal fixation and fusion constructs and opined that the 3 point fixation of C1-C2 provided the most stable construct. The trans articular screw technique combined with the atlas claw provided the best fixation of C1-C2. Of the constructs that did not involve the trans articular screws, the C1-C2 screw rod technique provided the best stability.

Claybrooks et al62 compared the biomechanics of C1 lateral mass-C2 pedicle fixation with C1 lateral mass-C2 laminar fixation. Both techniques were equivalent on flexion and extension and antero posterior translation. However, the C2 pedicle screw fixation demonstrated more stability with lateral bending and axial rotation. Gorek et al63 found these 2 constructs to be biomechanically equal.

Lapsiwala et al64 compared anterior trans articular, posterior trans articular, C1 lateral mass-C2 pedicle screws and C1 lateral mass-C2 intra laminar screws. It was found that the posterior trans articular fixation and C2 pedicle fixation constructs were better off with cable augmentation in flexion-extension. Results of anterior trans articular fixation were same as that of posterior trans articular fixation without cable augmentation. There was a significant difference in lateral bending between posterior trans articular fixation with cable augmentation and C2 intra laminar screw fixation with cable augmentation. The authors concluded that C2 intra laminar screw fixation with cable augmentation provided significant stability compared with the baseline intact spine.

ANTERIOR CERVICAL FIXATION

Good fusion rates can be achieved with posterior fixation but at the cost of range of motion. There will be restriction of head on neck rotation. White and Punjabi65 described a reduction of 47\º of axial rotation and a reduction of 10\º of flexion and extension following posterior arthrodesis. The segment is stabilized but the fracture is not reduced nor completely fused. Maiman and Larson28 in fact documented only...
35% fusion across the fracture line after posterior arthrodesis for odontoid fractures. Contrary to the posterior arthrodesis odontoid screw fixation aids in direct reduction and fixation of the fracture while maintaining rotational mobility.

ODONTOID SCREW FIXATION

Bohler36 was the first to describe this approach. The utility of this technique was demonstrated with the series of Aebi et al66 and Apfelbaum.67 The main indications for this procedure are type II odontoid fracture and some types of type III fractures. The main limiting factor for odontoid screw fixation is the integrity of the transverse ligament. Disruption of the transverse ligament is an absolute contra indication. Relative contra indications are severe osteopenia, a sloping fracture plane from antero inferior to postero superior, a fracture older than 6 months and poor patient body habitus.

Julien et al21 reviewed a series of articles on odontoid fixation24,26,36,68,69 and found that the fusion rates of type II fractures was 89% (112 of 126 patients) and that of type III fractures was 100% (20 patients). Subach et al70 managed 26 patients with odontoid screw fixation and achieved 96% fusion. Jenkins et al69 compared single screw to double screw fixation in a retrospective series of 42 patients. The fusion rates were 81 and 85% respectively. Apfelbaum et al67 compared anterior screw fixation in recent and remote fractures. Fusion rates were 88% in 6 months or less group and 25% in the remote injury group. This experience suggests that anterior odontoid screw fixation is most effective when performed early after injury (Fig. 5).

ANTERIOR ATLANTOAXIAL FACET FIXATION

This technique was described by Feiz et al71 This approach is same as for odontoid screw fixation. The C1-C2 junction is identified on either side and screws are placed in the anterior cortex of C2 through C1-C2 joint space at a 90° angle. This procedure is contra indicated in patients with osteoporosis, fracture of the superior articular facets, C2 body fracture or fracture of lateral mass of C1.

ODONTOID FRACTURES IN THE ELDERLY

Many series argue against surgical fixation in the elderly.18,72,73 Ryan and Taylor72 described 30 patients aged above 60 with type II dens fracture. There was no significant difference in the outcome between surgical and nonsurgical groups. Lennarson32 series provides evidence in support of surgery for patients aged over 50 years. In this series of there was 21 times higher rate of non union in the group managed with halo immobilization alone.

SUMMARY

Odontoid fracture is the most common subtype of C2 fractures. Type I odontoid fractures are rare and are usually managed with external orthoses. The fusion rate is 100% regardless of the type of external immobilization. The fusion rates in type III fractures are 85% with external orthoses and 100% with internal fixation and arthrodesis. The common practice is to go for external immobilization initially and to opt for surgical fusion in failed cases.

The treatment of type II fractures is not that straightforward: Type II fractures are the most common and the management strategies depend on age, fracture comminution, degree of displacement and the integrity of the transverse ligament. Surgical fusion rates are higher in patients aged above 50 years. Type IIA odontoid fractures have a high rate of non union when managed conservatively. They should be operated upon at the earliest. A dens displacement of more than 5 mm or significant posterior displacement are features which support early surgical fixation. If the transverse ligament is intact and fracture line is transverse odontoid screw fixation with postoperative collar immobilization is the treatment of choice. Transverse ligament disruption, comminuted fracture line or antero inferior to postero superior type II fracture warrants a posterior approach. All the methods of posterior arthrodesis have a high fusion rate. Trans articular screw fixation and ploy axial screw rod constructs provide the greatest stability.17

REFERENCES