A Comparative Evaluation of Shear Bond Strength of Different Pits and Fissure Sealants: An \textit{in vitro} Study

Nitin Singh, Govind Agrawal, AV Subhash, S Suneela, Aparna S Barabde, G Ajay Kumar

\textbf{ABSTRACT}

\textbf{Aim:} The aim of this study was to determine and compare the shear bond strength of three different pits and fissure sealants to enamel namely, Delton, Clinpro and Z350 Filtek flowable composite.

\textbf{Materials and methods:} Ninety permanent molars were divided into three groups of 30 each. Their proximal surfaces were prepared and stored in $37^\circ \text{C} \pm 5^\circ \text{C}$ normal saline for 24 hours. Sealant buttons were prepared. The specimens were tested in a shear mode (Lloyds LR100K) at a crosshead speed of 0.5 mm/min. The mean and standard deviations were subjected to an analysis of variance.

\textbf{Results:} The mean shear bond strength of samples of Delton was 10.33 MPa; Clinpro was 8.51 MPa and Z350 Filtek flowable was 12.17 MPa. The mean strength of Delton was significantly higher as compared to Clinpro whereas the mean strength of Z350 Filtek was significantly higher as compared to Delton and Clinpro (Student t-test, $p < 0.001$).

\textbf{Conclusion:} Z350 Filtek flowable composite had maximum shear bond strength than Delton FS sealant followed by Clinpro sealant.

\textbf{Clinical significance:} In this study, we compare the bond strength of three pits and fissure sealant, Clinpro yielded lower bond strength than Delton. This outcome can be described due to the presence of fillers in Delton, since these particles increase the resistance of the material to abrasion and also increase the mechanical resistance of the material.

\textbf{Keywords:} Pits and fissures, Pits and fissure sealants, Shear bond strength, Sealants, Nanofillers.

\textbf{Source of support:} Nil

\textbf{Conflict of interest:} None declared

\textbf{INTRODUCTION}

Pits and fissure are defects that occur on occlusal surface of molars and premolars with tortuous configuration that are difficult to assess from the surface. The narrow width and uneven depth make them vulnerable for acid producing bacteria to accumulate. Saliva, which helps to clean food particles from other areas of the mouth, even cannot clean pits and fissures in molars. A toothbrush bristle is too large to enter and clean most fissures thus, making them highly susceptible to advancement of the carious lesion.

Among surfaces of crown of posteriors, the occlusal surface with pits and fissure shows more carious involvement than other surfaces. Twelve and a half percent of all the different tooth surfaces in the mouth are occlusal surfaces. These surfaces develop more than two-thirds of the total caries experienced by children. Because of high incidence of caries process, the concept of extension for prevention as an adjunct procedure was developed. Different preventive techniques involving clinical methods and restorative materials were evolved for the sake of caries prevention. Newer approaches were continuously being developed including fluoride application and use of sealants.1

The sealant acts as a physical barrier in preventing oral bacteria and dietary carbohydrates from creating the acid conditions that result in caries. Placement of a sealant is a noninvasive technique that maintains tooth integrity while providing an acceptable resolution of the carious process. Caries activity in sealed carious lesions decreases dramatically with time. Radiographs show that not only the caries will cease beneath a properly placed sealant, but also that a lesion will inadvertently be arrested.2,3

In the longest clinical study done on sealant retention, 83\% effectiveness was seen against caries after 1 year and 53\% after 15 years. A study suggests that after placing sealants in 3- to 4-year-old children after a mean period of 2.8 years caries was found in less than 10\% of children. NHANES III survey (1988-1994) concluded that 62 to 82\% reduction in pit and fissure caries was seen after pits and fissure sealant application.4,5
If the sealants are placed, maintained and reapplied when necessary the children could have been caries-free. A reapplication every 6 months, if needed, is recommended. We, as pedodontist, have to be judicious in using pits and fissure sealant to aid in producing a caries-free world.

Therefore, the present study was conducted with an aim to determine and compare the shear bond strength of three different pits and fissure sealants to enamel namely, Delton, Clinpro and Z350 Filtek flowable composite.

MATERIALS AND METHODS

The present in vitro study was conducted on 90 caries free surfaces of permanent molars (Fig. 1), extracted for periodontal reasons or orthodontic purposes. On each tooth, sealant buttons were prepared; on either side of the proximal surface the teeth selected were cleaned with hand scalers to remove necrotic tissues, blood debris, stains and calculus. They were then washed with toothbrush under running tap water.

The mesial or distal surfaces were cleaned with pumice slurry with the help of rubber cup through slow speed micromotor to remove smear layer. The samples were then stored in normal saline at 37°C ± 5°C temperature.

The mesial or distal surfaces were cleaned with pumice slurry with the help of rubber cup through slow speed micromotor to remove smear layer. The samples were then stored in normal saline at 37°C ± 5°C temperature.

The various material used in this study are placed in table (Table 1).

DISTRIBUTION OF GROUPS

Teeth were randomly divided into three groups; group 1, group 2 and group 3. Each group was having 30 samples of teeth (Fig. 2) (Table 2).

Group 1: In group 1, fluoride releasing glass filled (55%) resin-based sealant was used (Delton).

Group 2: In group 2, fluoride releasing unfilled resin-based sealant was used (Clinpro).

Group 3: In group 3, nanoparticle filled (65%) resin-based sealant was used (Z350 Filtek flowable composite).

Each group of teeth was treated with 37% phosphoric acid etchant as per manufacturer’s instructions.

Caries free middle segment of mesial or distal surfaces was chosen for the preparation of sealant core to standardize the site of bonding of specimen.

A plastic ring of 3 mm internal diameter and 3 mm height was taken and placed over the enamel perpendicular to the prepared mesial or distal surface of teeth to ensure standardization of shape and size of sealant button. The remaining surface was covered with adhesive tape to prevent overflow of sealant from the interface of tooth and plastic mold.

After ring placement 37% phosphoric acid (EZ etchant) was used to etch the enamel surface within the concise area

Table 1: Material profile

<table>
<thead>
<tr>
<th>S. no</th>
<th>Materials</th>
<th>Description</th>
<th>Batch no</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Delton</td>
<td>Fluoride-releasing glass (55%) filled resin sealant</td>
<td>Lot no. 070915</td>
<td>Dentsply International York, PA</td>
</tr>
<tr>
<td>2.</td>
<td>Clinpro</td>
<td>Fluoride-releasing unfilled resin sealant</td>
<td>ID no. 70-2010-3150-0</td>
<td>3M ESPE Dental Products, St. Paul, MN, USA</td>
</tr>
<tr>
<td>3.</td>
<td>Z350 Filtek flowable composite</td>
<td>Nanoparticle (65%) filled sealant</td>
<td>ID no. 70-2010-1609-7</td>
<td>3M ESPE Dental Products, St. Paul, MN, USA</td>
</tr>
<tr>
<td>4.</td>
<td>EZ Etchant</td>
<td>37% phosphoric acid</td>
<td>Lot no. 0707252</td>
<td>Dentsply International York, PA</td>
</tr>
</tbody>
</table>

Fig. 1: Caries free surfaces of permanent molars
of the ring for 60 seconds, followed by rinsing with water for 20 seconds and then oil-free air drying with chip blower for 30 seconds till smooth chalky white surface was achieved.

The respective sealants of each group were filled into the plastic mold (Fig. 3) and cured for 30 seconds time with the light cure gun from the top as per manufacturer’s instruction. After curing, the plastic molds were cut with scalpel blade and sealant core teeth sample were removed and embedded in hard plaster, in plastic ring of 1 inch internal diameter and 2 inches of length at long axis of teeth to make plaster blocks. The specimens were stored in normal saline for 24 hours to avoid dehydration and were subjected for analysis in Lloyds LR100K universal testing machine (Fig. 4).

Shear bond strength of the prepared sealant core samples were tested using Lloyds LR100K universal testing machine. A knife edge chisel was used, which contacted the area of bonding between sealant mold and the tooth surface. The chisel was attached to crosshead of universal testing machine (Figs 5 and 6).
A shearing force was applied perpendicular to the prepared sealant surface with testing chisel at the crosshead speed of 0.5 mm/min.

The load at which the sealant mold was debonded from the tooth surface was noted from the device and computer, attached to the universal testing machine and values were recorded in Newton. It was then converted to Mega Pascal (MPa) with the help of conversion formula.

For the purpose of statistical analysis, the data obtained was fed into computer and analyzed using statistical package for social sciences (SPSS) Version 15.0. Analysis of variance (ANOVA) and independent sample ‘t’-test were performed.

While in group 1 the minimum to maximum range was 9.93 to 10.57 MPa, in group 2 it was 8.22 to 8.95 MPa and in group 3 between 11.63 and 12.67 MPa, showing a limited scope for overlapping forces.

On comparing the variance among the groups (Table 4), the F-ratio was calculated as 1959.052 which was statistically highly significant (p < 0.001) at degree of freedom 89. The ANOVA thus revealed a statistically significant difference among the groups.

The line diagram above clearly depicts that all the values of group 1 fall within the range 9.9 to 10.6 MPa, whereas all the values of group 2 fall within the range 8.2 to 9.0 MPa, and similarly all the values of group 3 fall within the range 11.5 to 12.7 MPa, thus there is almost no chance of deviation of the values from one range category to another, that is why there are highly significant differences between the groups.

Similar observations have been reflected in the line diagram (Graph 2).

The mean strength of group 1 was significantly higher as compared to group 2 (p < 0.001). The mean strength of group 3 was significantly higher as compared to group 1 (p < 0.001) and the mean strength of group 3 was significantly higher as compared to group 2 (p < 0.001) (Table 5).

On the basis of above results and statistical analysis the strength of the three groups could be depicted as: Group 3 > Group 1 > Group 2.

DISCUSSION

Acid etching causes optimization of tooth surface by removal of smear debris, i.e. the barrier layer on tooth surface and dissolution of biological apatite crystals from enamel that means the selective removal of substrate components thus making smooth surface to an irregular one. It also modifies surface energy, which reduces the contact angle. The contact angle is inverse measure of the wettability of the surface, which increases bonding and produces better interfacial contact between resin and enamel. The contact angle of uncured epoxy resin was reduced from a mean value of 28.3 to 14.3 after conditioning of surface.15,16

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of specimen</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Mean force applied</td>
<td>10.33</td>
<td>8.51</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.16</td>
<td>0.20</td>
</tr>
<tr>
<td>Median</td>
<td>10.32</td>
<td>8.51</td>
</tr>
<tr>
<td>Minimum</td>
<td>9.93</td>
<td>8.22</td>
</tr>
<tr>
<td>Maximum</td>
<td>10.57</td>
<td>8.95</td>
</tr>
</tbody>
</table>

Table 3: Mean force applied to break the sealant button from the tooth surface in three groups under study

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Comparison</th>
<th>'t'</th>
<th>'p'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Groups 1 vs 2</td>
<td>38.190</td>
<td><0.001</td>
</tr>
<tr>
<td>2.</td>
<td>Groups 1 vs 3</td>
<td>−30.041</td>
<td><0.001</td>
</tr>
<tr>
<td>3.</td>
<td>Groups 2 vs 3</td>
<td>−56.308</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 5: Intergroup comparison
Phosphoric acid is widely used for enamel etching in the range of 35 to 40% concentration. The acid should be used in proper concentration to prevent the formation of precipitates that could interfere with adhesion. Application of 50% phosphoric acid for 60 seconds results in formation of a monocalcium phosphate monohydrate precipitate that could be rinsed off. However, concentration below 27% may create dicalcium phosphate dihydrate precipitate, which cannot be easily removed and may interfere with the adhesion. Application of 30 to 40% phosphoric acid results in very retentive enamel surface.

Sound enamel after etching with phosphoric acid produces changes at microscopic level. Three zones are formed. In first zone, a narrow zone of enamel is removed by etching; it also removes plaque, surface and subsurface organic pellicle and inert mineral crystals which result in a more reactive surface, increased surface area and reduced surface tension that allow resin to wet the etched enamel more readily. This zone is approximately 10 µm in depth. The second zone is qualitative porous zone; it consists of large porosities and is 20 µm in depth. The final zone is quantitative porous zone, which consists of large porosities and is 20 µm in depth. These resin tags penetrate to a depth of 25 to 50 µm whereas some of the resin tags penetrate to a depth of 100 µm and are retained due to micromechanical bond. The length of resin tags may increase three times, by allowing visible light resin to penetrate into the microporosities for 20 seconds or more prior to curing reaction.

The pits and fissure sealant retention depends upon the penetration of the sealant into occlusal fissure and filler load that increases the resistance of sealant into the tooth surface.

Resins can be classified on the basis of filler particle size. Filler particles are called macrofill from 10 to 100 µm, midfill from 1 to 10 µm, minifill from 0.1 to 1 µm, microfill from 0.01 to 0.1 µm, nanofill from 0.005 to 0.01 µm. Nanofillers are so small that they fit between several polymer chains. This permits the opportunity to achieve very high filler loading levels in composites while maintaining workable consistencies. The filler particle size, distribution and quantity incorporated, influenced the mechanical and physical properties. Nanocomposites have equivalent or higher compressive, diametral and flexural strength with better fracture resistance than conventional composites.

The purpose of breaking a bonded assembly is to try to establish a number or value showing how strong the bond was. In shear bond test, the bond is broken by a force working parallel to the surface. The ISO document specified a shear test apparatus consisting of a solid block for fixation of the specimen and a connecting shearing blade with sharp edge. Bond strength is more predictive of materials retentive potential, hence about its durability and utility.

The mean bond strength of Delton FS filled sealant (group 1) was 10.33 MPa with standard deviation of ±0.16 MPa, similar results were reported with bond strength of 11.83 MPa, which was comparable to the present study. Other study presented bond strength value of 9.36 MPa, which were without any significant difference, found no difference in bond strength of sealant when compared to self-etching adhesive and 35% phosphoric acid. Comparable bond strength of 12.39 MPa after cleaning and polishing enamel surface with pumice was reported. And other study reported slightly higher values of 13.7 MPa after enamel surface being grounded by 180 to 400 Grit silicon carbide paper and polished by 600 Grit paper for 30 seconds to obtain standardized smear layer which resulted in increased mechanical bond but also removed extra enamel surface.
The mean bond strength of Clinpro unfilled sealant (group 2) was 8.51 MPa with standard deviation of ±0.20 MPa. Other study reported bond strength of 9.17 MPa, which were comparable to the present study.

The mean bond strength of Z350 Filtek nanofilled sealant (group 3) was 12.17 MPa with standard deviation of ±0.29 MPa. The higher result was yielded due to the presence of nanofiller particles that were dramatically smaller, could be dissolved in higher concentrations, and were polymerized into resin system with molecules designed to be compatible when coupled with polymer, to provide optimal adhesion to the mineralized hard tissue thereby enhancing the mechanical strength, marginal adaptation and seal thus improving the reliability and longevity of adhesive restoration.20

If we compare the bond strength of three pits and fissure sealant, Clinpro yielded lower bond strength than Delton. This outcome can be described due to the presence of fillers in Delton, since these particles increase the resistance of the material to abrasion and also increase the mechanical resistance of the material.

REFERENCES

CONCLUSION

Within the limits of this *in vitro* study and according to the methodology and the results drawn the following statements were concluded that Z350 Filtek (group 3) had maximum shear bond strength value of 12.17 MPa, Delton FS sealant (group 1) had shear bond strength value of 10.33 MPAs and Clinpro sealant (group 2) had minimum shear bond strength value of 8.51 MPa.

CLINICAL SIGNIFICANCE

In this study, we compared the bond strength of three pits and fissure sealant, Clinpro yielded lower bond strength than Delton. This outcome can be described due to the presence of fillers in Delton, since these particles increase the resistance of the material to abrasion and also increase the mechanical resistance of the material.
A Comparative Evaluation of Shear Bond Strength of Different Pits and Fissure Sealants: An in vitro Study

ABOUT THE AUTHORS

Nitin Singh (Corresponding Author)
Senior Lecturer, Department of Pedodontics and Preventive Dentistry Saraswati Dental College and Hospital, Lucknow, Uttar Pradesh, India
e-mail: nitinpedopost@yahoo.in

Govind Agrawal
Senior Lecturer, Department of Conservative Dentistry and Endodontics, Dr. Hedgewar Smruti Runma Sewa Mandal's Dental College and Hospital, Hingoli, Maharashtra, India

AV Subhash
Reader, Department of Oral and Maxillofacial Pathology, Sree Sai Dental College and Research Institute, Srikakulam, Andhra Pradesh, India

S Suneela
Reader, Department of Oral and Maxillofacial Pathology, Sree Sai Dental College and Research Institute, Srikakulam, Andhra Pradesh, India

Aparna S Barabde
Professor and Head, Department of Prosthodontics, VYWS Dental College and Hospital, Amravati, Maharashtra, India

G Ajay Kumar
Reader, Department of Prosthodontics, Army College of Dental Sciences, Secunderabad, Andhra Pradesh, India