Anatomical Analysis of the Frontal Recess Cells in Endoscopic Sinus Surgery—An Indian Perspective

1Dhingra Shruti, 2Agarwal AK, 3Passey JC, 4Kaul JM

1Resident, Department of Otolaryngology and Head and Neck Surgery, Maulana Azad Medical College and LNJP Hospital New Delhi, India
2Dean and Director Professor, Department of Otolaryngology and Head and Neck Surgery, Maulana Azad Medical College and LNJP Hospital, New Delhi, India
3Professor, Department of Otolaryngology and Head and Neck Surgery, Maulana Azad Medical College and LNJP Hospital New Delhi, India
4Director Professor, Department of Anatomy, Maulana Azad Medical College and LNJP Hospital, New Delhi, India

Correspondence: Dhingra Shruti, Resident, Department of Otolaryngology and Head and Neck Surgery, Maulana Azad Medical College and LNJP Hospital, New Delhi, India, e-mail: shrudoc@hotmail.com

INTRODUCTION

Endoscopic surgery of the frontal sinus is a complex procedure due to its anatomic variations and different types of air cells encroaching on the pathway to its ventilation and drainage. Agger nasi cells, frontal cells, supraorbital ethmoidal cells, variations of uncinate process and bulla ethmoidalis can all impede the drainage. To relieve these obstructions requires thorough knowledge of the anatomy of this region before the surgeon can operate with confidence and without intracranial or intraorbital complications. Since it had been difficult to visualize the frontal recess, intranasal surgery of frontal sinus was abandoned by most of the otolaryngologists of the past who then resorted to external operations of the frontal sinus. Recent development of endoscopes, sophistication in endonasal instrumentation and better and brighter illumination has once again created interests and led to the resurgence of intranasal approaches. Difficulties are still experienced particularly in revision cases. This has led to the development of image guided navigational surgery where frontal recess and frontal ostium can be localized more accurately. In spite of these advances, most endoscopic surgeons, even with several years of experience of endoscopic procedures on the nose and sinuses, emphasize the firm grasp of anatomy and variations of this region. Balloon sinuplasty, the most recent and the least invasive technique wherein the drainage of the frontal sinus is dilated, also requires full understanding of the anatomy of this region. The present study was conducted with this aim in view so as to better equip the operating surgeon.

Due to a paucity of literature on Indian subjects, the aim of the present study was to study the various air cells which encroach on the area of frontal recess and would need surgical removal to provide adequate drainage in the area of frontal recess.
MATERIALS AND METHODS

The study was conducted in the Department of Otolaryngology and Head and Neck Surgery and the department of Anatomy, Maulana Azad Medical College, New Delhi. Anatomical dissections were performed on the lateral wall of nose in 30 embalmed adult cadaveric half heads.

Specimens having previous surgery or trauma were excluded from the study. The presence or absence of Agger nasi, frontal, supraorbital ethmoidal cell and suprabullar cell was noted.

Materials used for study:
1. Thirty cadaveric half heads.
2. Vernier callipers.
3. Dissection instruments (including curette, punches, probe, drill, divider, burr).
4. Magnifying glass.
5. Dissection microscope.
6. Image analyzer with appropriate software.

A silicon based impression material, polyvinylsiloxane, an addition type silicone elastomer, light body, usually used in dentistry, with an automatic mixing device, was used for taking impressions of the frontal sinus and its drainage into the infundibulum was studied. This material has a setting time of 180 seconds, and recovers after deformation in 99.50% cases with a dimensional change of – 0.2%. This material was poured into the frontal sinus after loading it in an injecting device. It traversed the frontal sinus and passed through its natural ostium into the frontal recess in a way that is similar to the flow of mucous in the frontal sinus in the living. After the material was set in about 3-4 minutes, the various cells surrounding the frontal recess and encroaching onto the ostium, which had been previously studied in the cadaveric specimen in detail, were carefully curetted out. This helped us to study the various cells that need removal in order to approach the frontal sinus with the area of the recess being outlined by the silicon material. The entire impression of the sinus, the ostium, the recess and its pathway of drainage in relation to the uncinate, could therefore be accurately studied and measurements taken.

RESULTS

Agger nasi cells: Lateral wall of nose in front of anterior attachment of middle turbinate shows a bulge called agger nasi (Fig. 1). On dissection with curettes, needles and probes, it was found to be a solid mound in 24 specimens. Only in 6 specimens (20%) was it pneumatized (Fig. 2). Degree of pneumatization varied. Only in one case agger nasi cell was large enough to encroach on the frontal recess.

Frontal cells: Frontal cells were seen in only 5% specimens (16.6%). They were classified according to Bent et al.

Type I cell, i.e. a single cell in the frontal recess above the agger nasi cell was present in 3 specimens, i.e. 10% (Fig. 3).

Type III cells, i.e. a single cell extending from middle meatus into the frontal sinus was seen in one specimen (3.3%).

Type IV cells, i.e. an isolated cell within the frontal sinus without an obvious connection to the frontal recess was also seen in one specimen (3.3%).

Type II cell, i.e. a tier of two or more cells, above the agger nasi cell, may or may not invade frontal sinus, were not seen in any specimens.
Anatomical Analysis of the Frontal Recess Cells in Endoscopic Sinus Surgery—An Indian Perspective

Supraorbital ethmoidal cell: They are seen to pneumatize orbital plate of frontal bone. They were seen in only two specimens (6.6%). In each case their opening was situated behind the bulla ethmoidalis.

Inter sinus septal cell: It was not seen in any specimens where intersinus septum was seen. In most of the specimens, this septum had been destroyed.

DISCUSSION

Frontal sinus and its drainage pathway are seen as an hourglass structure with its “waist”, the narrowest part being the ostium of frontal sinus and inferior wider part as the frontal recess. Frontal recess is thus the inverted cone with apex directed superiorly towards ostium of frontal sinus. The ostium has also been called the frontal isthmus. It can be easily seen in sagittal reconstructions of axial and coronal views of CT scan of paranasal sinuses.

Agger nasi cells: The incidence of the presence of agger nasi varies widely in the literature. Bolger et al\(^1\) in a review of 200 CT scans found them in 98.5% while Zinereich et al\(^2\) stated that agger nasi cells are present in 100% and considered them to be normal anatomical structures. Lloyd et al\(^3\) stated them to be present in only 20%, though agger nasi was a solid mound in the rest. In anatomical dissections of 30 half-heads, Gaafer et al\(^7\) found that agger nasi was just a ridge in 23.3%, while it was pneumatized in 76.6%. Number of cells in agger nasi may also vary. In the study by above authors, agger nasi had a single cell in 14 specimens, 2 cells each in 6 specimens and 3 cells each in 3 specimens. Agger nasi cells pneumatize mostly from the frontal recess or from the ethmoidal infundibulum. Agger nasi cell may be large enough to obstruct the frontal sinus as in one of our specimens. Presently surgery of frontal sinus is surgery in the area of frontal recess and to provide an unobstructed drainage pathway. Removing the prominent agger nasi cell is often the main element in relieving the obstructed drainage. Wormald\(^9\) stated that agger nasi cell is the “key that unlocks the frontal recess” signifying its clinical importance.

Medial and posterior walls of agger nasi cell are the ones over which the frontal sinus drainage occurs and they are also free standing surfaces. Agger nasi cell must be removed for free drainage. If part of it, more often, the cap, is left behind, it will form adhesions with the surrounding structures, particularly the bulla and obstruct the flow of frontal sinus.

Frontal Cells (%)

<table>
<thead>
<tr>
<th>Del Gaudio</th>
<th>Meyer</th>
<th>Our study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cells</td>
<td>29.6</td>
<td>20.4</td>
</tr>
<tr>
<td>Type I</td>
<td>18.6</td>
<td>14.9</td>
</tr>
<tr>
<td>Type II</td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td>Type III</td>
<td>6.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Type IV</td>
<td>3.1</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Figure 3: Section showing type I frontal cell (single cell above agger nasi cells not pneumatizing into frontal sinus)
Supraorbital ethmoidal cells: These are ethmoidal cells which pneumatize the orbital plate of frontal sinus. According to Kasper,\(^5\) they develop from the third and fourth frontal furrows. Stammberger\(^4\) stated that supraorbital cell develops as an extension from the posterior aspects of frontal or the suprabullar recess. Supraorbital cell can also encroach on the frontal recess and impede the drainage and also create difficulties in surgical dissections in this area. Opening of supraorbital ethmoidal cell is always behind the bulla ethmoidalis. Supraorbital ethmoidal cell and frontal sinus may coalesce together but will have two distinct openings, one for each.

In our specimens, supraorbital cells were seen in 2 cases (6.6%). Their openings were situated behind the bulla ethmoidalis.

Owen and Kuhn\(^11\) emphasized the surgical importance of these cells. Supraorbital cells displace the posterior wall of frontal sinus and thus encroach on drainage pathway.

<table>
<thead>
<tr>
<th>Supraorbital Ethmoidal Cells (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kasper</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Frontal recess, classically described as an inverted funnel shaped area, is a potential space. It may be encroached by several structures such as agger nasi cells, frontal cells, supraorbital ethmoidal cells, variations of uncinate process and bulla ethmoidalis which can change its shape and dimensions. It is also an important area in the etiology of recurrent or persistent frontal sinusitis and to perform uneventful surgery in this area.

Several air spaces open into it – agger cells, frontal cells, supraorbital ethmoidal cell, concha bullosa, bulla ethmoidalis and the lateral sinus.

Thus, this space of frontal recess potentially extends into these structures by continuity and so will be the dimensions. In fact the very structures which limit the boundaries of frontal recess can actually form part of the recess.

CONCLUSION

With the advent of CT scans and endoscopic sinus surgery, renewed interest has been created in the surgical treatment of diseases of the frontal sinus. Obstruction to drainage and ventilation of the frontal sinus is the main cause of acute and recurrent infection. It is also the main cause in persistent or residual disease. Since most of the endoscopic surgery of the frontal sinus involves its recess, our focus of interest was to study the anatomy of this region in detail.

The study comprised of 30 cadaveric half heads cut sagittally and further dissected to define the area of frontal recess and ostium of frontal sinus.

It was revealed that:

1. Agger nasi region was a solid mound in 80% while it was pneumatized in 20%. In one case, agger nasi cell was very large and encroached on the area of frontal recess.
2. Frontal cells were seen in only 16.6% cases. Type I cell was the most common (10%) while type III and IV were seen in 3.3% each. No type II cells were seen.
3. Supraorbital cells pneumatizing the orbital plate were seen in 6.6%. Their opening was located behind the bulla ethmoidalis.

Frontal recess is bordered by agger nasi cells anteriorly, bulla ethmoidalis posteriorly, uncinate process inferiorly and middle turbinate medially. Uncinate process is also the key area in deciding the outflow tract of frontal sinus. Several variations can occur in this area and can obstruct the frontal recess.

With the advances in imaging techniques, this area can now be studied in a sagittal plane in addition to coronal and axial ones. In computerized navigational surgery also, the surgeon requires an in-depth knowledge of the anatomy of this area. Most of the anatomical studies made in the past are inadequate to meet the demands of the present day endoscopic surgeon. At present, there is need to further study the anatomy of this area by both meticulous dissections and by multiplanar CT scans with 3D analysis of structures and to correlate the two.

There is also need for uniformity of terminology at international level while describing these structures or those newly identified.

REFERENCES
