Adaptation of Different Compomers to Primary Teeth Cavities

Sumanth M Shetty, Rashmi G Shetty

ABSTRACT

Background: Compomers remain the material of choice for restoration of primary teeth as they combine the best of GIC and composites. However, as it is a resinous material, attention is focused on polymerization shrinkage causing gaps at restoration cavity interface. Gaps represent decreased efficacy of adaptation.

Aim: To evaluate the marginal adaptation of compomers (Dyract, Compoglass, and F-2000) in class I and V cavities in primary molars.

Materials and methods: Sixty noncarious primary molars were divided for three compomers (20), which were subdivided to two groups. Standard class I and V cavities (10 each) were prepared and restored. The cavity interface was examined and observations analyzed. The cavities were etched prior to restoration and margins were exposed. The cavosurface margins were inspected under stereomicroscope for surface gaps. Then buccolingually sectioned, they were examined for marginal gaps. Two specimens each were selected for SEM. Chi-square test was used to determine statistical significance (p < 0.05).

Results: All compomers showed good adaptation at cavosurface, with class I better than V. Compoglass and Dyract were better adapted to cavity walls than F-2000. SEM revealed close interlaced adaptation of filling material to etched cavity.

Conclusion: This study has shown that compomers provide good adaptation at cavity margins with compules (Compoglass and Dyract) being a better mode of dispensing than syringe tubes (F-2000). SEM showed gaps and pooling of adhesive and air in few samples.

Keywords: Compomer, Dyract, Adaptation, Class I, Class V, Primary teeth, Compoglass, F-2000.

How to cite this article: Shetty SM, Shetty RG. Adaptation of Different Compomers to Primary Teeth Cavities. J Orofac Res 2012;2(1):27-32.

Source of support: Nil
Conflict of interest: None declared

INTRODUCTION

Over the past 50 years, many changes have occurred in the development and availability of restorative materials for children. The practitioner was limited to amalgam, crowns, silicate cement, acrylic or other esthetically less than desirable restorations. Today, many choices are available to the pediatric dental practitioner.1

Glass ionomer (GI) restorative materials were introduced in the late 1970s, as adhesive restorations for nonretentive cervical cavities. These materials were superseded by resin modified glass ionomer cements, which are light curable and offer improved cosmetic qualities.2 More recently, a hybridization of composite and glass ionomer cement classified as polyacid modified composite resins (compomer) are available. They have better physical properties and bonding abilities of glass ionomers, with the high esthetics of composite resin. These materials are indicated for restoring primary teeth cavities, release fluoride and adhere to tooth structure.3-5

As compomers are resinous, attention should be focused on polymerization shrinkage.6 If great, then failure of the bond occurs, resulting in gap formation between the tooth and restoration. The extent of gap represents the efficacy of attachment of restorative material to the tooth.7 The gap predisposes a tooth to discoloration, recurrent decay and postoperative sensitivity with pulpal inflammation.8-11

The objective of this study was to evaluate the marginal adaptation of Dyract, Compoglass and F-2000 in class I and class V restorations at cavosurface margins and within margins.

MATERIALS AND METHODS

This in vitro study was carried out in the Department of Pedodontics and Preventive Dentistry, in association with Department of Metallurgy, Indian Institute of Sciences, Bengaluru. Ethical clearance was obtained from Ethical Committee of Institute.

Sixty noncarious human primary molars, extracted at the time of exfoliation or for orthodontic treatment were stored in distilled water.12-14 These were randomly divided into three groups of 20 teeth each—Group I: Dyract; Group II: Compoglass and Group III: F-2000.

These were further divided into two subgroups of 10 teeth each. Standardized class I cavity of 4 mm in length, 2 mm width and 1.5 mm depth was prepared in the first subgroup15,16 and standardized class V cavity of 4 mm length, 2 mm width and 1 mm depth in the second subgroup (Graph 1).17

Group I (Dyract)

The teeth were etched with 37% phosphoric acid for 15 seconds, washed and dried with cotton pellets. Prime and Bond 2.1 adhesive was applied and left undisturbed for 30
seconds, excess solvent removed with oil-free air and light cured for 20 seconds.

Group II (Compoglass)

In this subgroup, the cavity was etched, rinsed and dried similarly to Dyract group. Excite adhesive was applied in a manner similar to that of Prime and Bond adhesive for Dyract.

Group III (F-2000)

Etching was done similarly as in the Dyract group. The cavity was rinsed, air dried and Scotchbond was applied following the same procedural steps as with excite for Compoglass.

After adhesive application, all cavities were filled with respective compomers as per manufacturer’s instructions. They were filled with compules of Compoglass and Dyract and from the tube in case of F-2000, in one increment for the shallow class V cavities and in two increments for Class I. The material was packed with slight overfilling and light cured for 40 seconds. The cavities were finished with finishing diamond stones and true cavity margins were exposed. Polishing was done using Politip-P polishers.

The samples were stored in distilled water for 24 hours at room temperature. All specimens were subjected to stereomicroscope examination of cavosurface margins and surfaces with gaps were recorded. The specimens were then sectioned buccolingually with a diamond disk and smoothened with #300 grit silicon carbide paper. The inner cavity restoration interface (2 walls, 1 floor and 2 angles) was stereomicroscopically examined and margins showing gaps were recorded.

Observations were later statistically analyzed. Two specimens from each subgroup were randomly selected for SEM observation for presence of gaps at inner margins of the cavity. Chi-square test was used to determine statistical significance ($p < 0.05$).

RESULTS

Tables 1 and 2 show adaptation of the three different compomers on the cavosurface margins, floor, two walls and two angles of class I and V restoration. Statistically, Chi-square test was used to determine significant differences in the cavosurface margins and inner cavity restoration interface in various groups. Statistical significance was predetermined at a probability value of 0.05 or less.

For class V cavities, out of the 10 samples showing gaps at cavosurface in class V fillings, eight were on enamel and two on cementum. Statistical analysis of gaps recorded on the floor of class V cavities of the three different compomers showed that Dyract had significantly better adaptation than F-2000 in the nonetched group (Fig. 1). The others showed no significant correlation (Fig. 2).

Of all of the three compomers in class I as well as class V showed more number of gaps at angles. However, the results were not statistically significant. On analysis of marginal
adaptation to walls of the cavity, significant difference was observed statistically between Dyract and F-2000 (p = 0.02) and between Compoglass and F-2000 (p = 0.02) in the etched group. Compoglass and Dyract were better adapted than F-2000 on the walls of class V cavity in the etched group (Fig. 3).

SEM examination confirmed the stereomicroscopic findings. Compoglass and Dyract showed close adaptation of filling material to the etched cavity while gaps were seen in F-2000. Pooling of adhesives at the angle and incorporation of air bubbles were seen in some specimens.

DISCUSSION

Compomers are greatly popular particularly in pediatric dentistry for children because of their composite like aesthetics, ease of placement, light cure and good handling characteristics. As a single component material, compomers are available in a variety of delivery forms including syringe (screw) tubes, compules and most recently in Aplicaps. It is likely that the success of compomers will continue for the foreseeable future, mainly because of their ease of use.1 Manufacturers of compomers claim that they are indicated in class III and V cavities, small class I and II cavities of permanent teeth and all cavity classes in deciduous teeth.

A major goal in restorative dentistry is the control of marginal leakage seen because of dimensional changes or lack of adaptation to cavity during placement. These may lead to postoperative sensitivity, staining or recurrent caries.18-20 As no dental material is exempt from microgaps, adaptation information is critical for comparative assessment of different materials.

The marginal integrity of polymeric restorative materials depends on several factors including polymerization shrinkage, adhesion to tooth structure, water sorption, coefficient of thermal expansion, mechanical loading and marginal degradation.21 So, the study was carried out to evaluate the marginal adaptation of Dyract, Compoglass and F-2000 compomers. Class I and V cavities were evaluated as their standardization can be done easily. The samples were stored in distilled water, since it does not affect the dentin permeability as compared to saline.22,23 Two specimens from each subgroup which were randomly selected for SEM observation confirmed the findings of stereomicroscopic observation (Figs 7 and 8).

The results obtained from this study may not directly be extrapolated to clinical situations but they provide some information about the performance of the compomer systems evaluated.

Further investigations involving a large sample and a more detailed interfacial micromorphological study is needed before definite conclusion can be drawn.

All the materials considered in our study showed gaps (Fig. 4). But F-2000 had shown statistically significant gaps than Compoglass and Dyract. This may be due to the form in which the material is dispensed, i.e., in screw tubes unlike the compules with gun of Dyract and Compoglass. Screw tubes do not allow the material to be dispensed under pressure.

Also adaptation of class I was better than class V in cavosurface margin (Fig. 5). This is in agreement with El-Kalla22 (1999). This could have been due to (1) difference in outline form—Class I that follows the fissures in multidirections, resisting polymerization contraction in one basic direction as in class V restorations. (2) Less cavity width of class I at the cavosurface margins. (3) Incremental technique followed in class I cavities. In our study, the adaptation to cementum was better than to enamel (Graph 2). This is in agreement with El-Kalla (1999) and Hakimeh et al.28 This could be due to the different quality of mineralization of the various dental substrates.

Angles in the cavities showed high incidence of gaps and are more susceptible to air entrapment (Fig. 6). Hence, care should be taken to avoid the air entrapment at the angles while placing the material. Pooling of adhesives was also observed, so care should be taken while placing adhesive inside the cavity.

The results obtained from this study may not directly be extrapolated to clinical situations but they provide some information about the performance of the compomer systems evaluated.

Further investigations involving a large sample and a more detailed interfacial micromorphological study is needed before definite conclusion can be drawn.

This study 37% phosphoric acid gel was used due to its superior clinical handling qualities.27
STEREOMICROSCOPIC EXAMINATION

Fig. 1: Specimen showing gap in cavosurface margin of class V cavity restored with Dyract

Fig. 2: Specimen showing good adaptation in class V cavity restored with Dyract

Fig. 3: Specimen showing gap in the walls and floor of class V cavity restored with F-2000

Fig. 4: Specimen showing gap in the walls of class I cavity restored with Compoglass

Fig. 5: Specimen showing good adaptation in class I cavity restored with Compoglass

Fig. 6: Specimen showing gap at the angle of class I cavity restored with Dyract
CONCLUSION

Considering the aims with which the present study was undertaken, it can be concluded that:

• All the three composites in this study showed presence of gaps at all the margins observed.

• Of the composites used Dyract and Compoglass were significantly better adapted to the cavity walls than F-2000.

• The observation done under SEM confirmed the presence of gaps and also revealed pooling of adhesive and air entrapment in few samples.

REFERENCES

ABOUT THE AUTHORS

Sumanth M Shetty (Corresponding Author)
Associate Professor, Department of Pedodontics, Sri Aurobindo Institute of Medical Sciences, Ujjain State Highway, Near MR 10 Crossing, Indore, Madhya Pradesh, India, Phone: +91-9886644249 e-mail: drsumanthshetty@gmail.com

Rashmi G Shetty
Assistant Professor, Department of Conservative Dentistry and Endodontics, Sri Aurobindo Dental College, Indore, Madhya Pradesh India