Comparison of Placido, Scheimpflug and Combined Dual Scheimpflug-Placido Technologies in Evaluating Anterior and Posterior CLMI, SimK’s as well as Kmax, in Keratoconic and Postrefractive Surgery Ectasia

Thomas F Mauger, Ashraf M Mahmoud, Cynthia J Roberts, Lena V Chheda, Rebecca A Kuennen
Andrew J Hendershot, Richard G Lembach

ABSTRACT

Purpose: To calculate and compare cone location and magnitude index (CLMI), Kmax and other corneal measures derived from three different technologies, Placido, Scheimpflug, and a combination dual Scheimpflug-Placido device, from the same group of eyes with keratoconus and postrefractive surgery corneal ectasia.

Methods: Keratoconus (n = 26) eyes of (n = 19) subjects and postrefractive surgery ectasia (n = 5) eyes of (n = 5) subjects were selected to have measurements performed using the Keratron Scout, Pentacam HR and Galilei Dual Scheimpflug Analyzer. Device-generated SimK’s and device-specific CLMI and Kmax indices as well as map data, were exported from each device. Index values for multiple exams were averaged. The map data were processed using The Ohio State University Corneal Topography Tool (OSUCTT) to calculate CLMI parameters, Kmax and SimK values using consistent algorithms on all three devices. Maps were averaged before calculation for multiple examinations. Repeated measures analysis of variance and post-hoc analysis were used to identify differences between devices.

Results: The anterior axial CLMI calculated from the Keratron data was significantly higher than CLMI for the Galilei (p = 0.0443) or Pentacam (p < 0.0004) with keratoconus, 12.23 compared with 11.20 and 11.00 diopters, respectively. Kmax was also significantly higher in the Keratron than the Galilei (p = 0.0063) or the Pentacam (p = 0.00002). Galilei and Pentacam were not significantly different from each other in either CLMI (p = 0.6828) or Kmax (p = 0.2115). The anterior CLMI values for the postrefractive surgery ectasia eyes were not significantly different between devices. Posterior CLMI values were calculated from the Galilei and Pentacam data and were −2.60 and −2.46 diopters (p = 0.1173) for keratoconus and −2.66 and −3.04 diopters (p = 0.2242) for postrefractive surgery ectasia.

Conclusion: The small cone Placido measured dioptic values that were greater than the pure Scheimpflug system, but the difference was only about 1 diopter, which is not relevant clinically in evaluating and managing ectasia. The combined dual Scheimpflug-Placido system produced measured dioptic values between the other two technologies. The anterior CLMI calculations accurately predicted keratoconus with all three devices. The posterior CLMI in ectasia may be a potentially valuable calculation in demonstrating asymmetric steepening.

Keywords: Keratoconus, Collagen corneal cross-linking (CXL), Corneal topography, Placido disk topography, Ectasias.

Comparison of Placido, Scheimpflug and Combined Dual Scheimpflug-Placido Technologies in Evaluating Anterior

Devices

Pentacam HR

The Pentacam HR is a high resolution rotating Scheimpflug camera with a blue slit light that successively illuminates a minimum of 25 meridional slits over 360° through the cornea during each measurement. Software version 1.17 was used in the current study. The Pentacam can be considered a tomographer, since it acquires data on all anterior segment structures, including anterior and posterior cornea surfaces, iris and lens. The precision of SimK measurements with the Pentacam HR has been reported to be good with repeatability limits of 0.25 and 0.36 diopters for K1 and K2 respectively. In separate reports, the coefficient of repeatability for simulated keratometry on the Pentacam was reported to be ±0.28 diopters, indicating good repeatability, and the coefficient of variation was reported to be within 1%. No studies of accuracy have been published due to the lack of an appropriate test surface. SimKs and Kmax (maximum curvature on the axial map) were exported for analysis.

Galilei Dual Scheimpflug Analyzer

The Galilei uses dual rotating Scheimpflug cameras with a blue slit light that successively illuminates a minimum of 15 meridional slits with simultaneous image capture by both opposing cameras over 180°, all integrated with a flat 20-ring, infrared Placido disk topographer which captures two images 90° apart during each measurement. Software version 5.2.1 was used in the current study. The Galilei can be considered a tomographer/topographer, since it acquires data on all anterior segment structures, including anterior and posterior cornea surfaces, iris and lens as well as integrated Placido topography. Reproducibility of the Galilei reported as intraclass correlation coefficients (ICC) in central corneal thickness, Kflat and Ksteep were 0.98, 0.97 and 0.84 respectively. In pre- and postrefractive surgery population, ICCs were greater than 0.99 for SimKs, as well as other measures of corneal power and the coefficient of variation was less than 0.5% in corneal power. No studies of accuracy have been reported due to the lack of an appropriate test surface. SimKs were exported for analysis.

Keratron Scout

The Keratron is a small cone, 28-ring, visible light Placido corneal topographer that derives curvature data using an arcstep algorithm to reconstruct 360 meridians through the center and perpendicular to the rings projected onto the cornea. Software version 4.6.6 was used for the current study. Accuracy studies are possible with a Placido topographer due to the existence of test surfaces for comparison of measured to true value. The accuracy of the keratron in the measurement of curvature has been reported between ±0.1 and ±0.25 diopters. The repeatability of the keratron in normal subjects has been assessed via coefficient of variation and reported to be within 1%. The cone location and magnitude index (CLMI) is calculated on the axial, tangential and Gaussian curvature maps. This index identifies the steepest 2 mm diameter region within an 8 mm diameter search zone and compares the average curvature magnitude within this region to a 2 mm diameter region at the same radial distance from the center in the opposite quadrant. The axial CLMI is used for screening and the tangential curvature CLMI is used to track disease progression. The magnitude of the steepest region and its spatial location are reported by the Keratron for each type of curvature map. For the current study, SimKs and the CLMI index parameters were exported.

Analysis

Device-generated SimKs and device-specific CLMI and Kmax indices as well as surface data from anterior, posterior
and pachymetric maps, were exported from each of the three devices. SimKs and index values for multiple examinations were averaged. In order to compare technologies using consistent algorithms, the map data were processed using The Ohio State University Corneal Topography Tool (OSUCTT) and SimKs were calculated, along with the indices, using the same algorithm for each device.12-15 Maps were averaged before processing for multiple examinations. CLMI parameters included CLMI on the axial map (CLMI\textsubscript{axi}) and the average magnitude of the 2 mm spot (CLMI\textsubscript{spotaxi}) on all devices as well as CLMI on the posterior axial map (PCLMI\textsubscript{axi}) and the average magnitude of the 2 mm spot (PCLMI\textsubscript{spotaxi}) on the two tomographers. Kmax was determined by extracting the steepest single value within the 2 mm CLMI spot on the anterior axial map. Repeated measures analysis of variance and post-hoc analysis were used to compare devices.

SimK, CLMI and Kmax algorithms calculated by the OSUCTT were validated by comparing the native device index against the corresponding calculated index using linear regression analysis. Indices were averaged for multiple maps.

RESULTS

Validation of the OSUCTT algorithms is shown in Figures 1 to 3. CLMI and spot parameters from the Keratron compared to OSUCTT CLMI parameters are given in Figure 1. Pentacam-generated Kmax compared to OSUCTT-calculated Kmax is shown in Figure 2, and regression analyses for SimKs by device are shown in Figure 3. For all regressions, \(p < 0.0001 \) and \(R^2 > 0.97 \).

Keratoconus

The device-generated and OSUCTT-calculated parameters for the 26 keratoconic eyes are presented in Table 1 and show the \(p \)-values produced by the ANOVA to indicate that at least one of the three devices is different. The CLMI\textsubscript{axi} data are 11.20, 11.00 and 12.23 diopters respectively for the Galilei, Pentacam and Keratron instruments. The post-hoc analysis shows that the Keratron is significantly different from the Galilei in both CLMI\textsubscript{axi} (\(p = 0.0443 \)) and Kmax (0.0063) as well as from the Pentacam in both CLMI\textsubscript{axi} (\(p < 0.0004 \)) and Kmax (\(p < 0.0002 \)). However, the Galilei and Pentacam are not significantly different for either CLMI\textsubscript{axi} (\(p = 0.6287 \)) or Kmax (\(p = 0.2115 \)). For CLMI\textsubscript{axi} and Kmax as well as CLMI\textsubscript{spotaxi}, the Keratron has the highest value. For CLMI\textsubscript{spotaxi}, the Keratron was not significantly different from the Galilei (\(p = 0.0630 \)), but was significantly different from the Pentacam (\(p = 0.0006 \)). The Galilei and Pentacam were also significantly different in CLMI\textsubscript{spotaxi} (\(p = 0.0381 \)).

For the OSUCTT calculated SimK values, the steep meridians were all significantly different from each other (\(p < 0.05 \), and none of the flat meridians were different.
Comparison of Placido, Scheimpflug and Combined Dual Scheimpflug-Placido Technologies in Evaluating Anterior

(p > 0.05). In the native SimK values, the steep meridian of the Galilei was not significantly different from the Keratron (p = 0.4493), but was significantly different from the Pentacam (p = 0.0001) and the Pentacam and Keratron were also significantly different from each other (p = 0.0043).

For the OSUCTT-calculated average SimK, the only two devices that were not significantly different were the Galilei and Pentacam (p = 0.7972). The Keratron SimKavg was significantly different from both Pentacam (p = 0.0015) and Galilei (p = 0.0216). For the native SimKavg, however, the
only two devices not significantly different were the Galilei and Keratron (p = 0.8892). The Pentacam was significantly different from both the Galilei (p = 0.0077) and the Keratron (p = 0.0139).

Ectasia

The device-generated and OSU-CTT-calculated parameters for the five postrefractive surgery ectasia eyes are presented in Table 2. The CLMI_axi data are 12.39, 14.61 and 14.02 diopters for the Galilei, Pentacam and Keratron instruments respectively. They are not significantly different from each other (p = 0.2024 ANOVA). Although the ANOVA for Kmax indicates that at least one device is different, none of the individual device comparisons in the post-hoc analysis reaches the 0.05 level of significance. This is likely due to the low number of eyes. None of the other relationships are significantly different.

PCLMI_axi

The CLMI calculated from the posterior corneal axial measurements (PCLMI_axi) from the Galilei and Pentacam instruments was calculated in the same manner as the anterior-based CLMI, and were not significantly different in either group. The measurements were −2.66 and −2.46 diopters for the keratoconic eyes with the Galilei and the Pentacam instruments respectively (p = 0.1173). The measurements were −2.66 and −3.04 diopters respectively, for the postrefractive ectasia eyes (p = 0.2242).

DISCUSSION

A comparison between topographic/tomographic technologies demonstrates that small-cone Placido topography tends to measure the highest dioptric values in the anterior surface parameters, and pure Scheimpflug tomography tends to measure the lowest dioptric values. This is consistent with other reports in the literature in normal eyes.22 Combined Placido/Scheimpflug tomography/tomography tended to measure values in between the other two technologies. It is not possible to know which is the most accurate with the current study design, since an accuracy study would require a test surface of known shape. However, it is important to understand how the devices compare in evaluating keratoconus, including screening for

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Galilei</th>
<th>Pentacam</th>
<th>Keratron</th>
<th>p-value (ANOVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device SimK steep</td>
<td>49.38 (5.53)</td>
<td>48.47 (5.14)</td>
<td>49.12 (5.57)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Device SimK flat</td>
<td>44.61 (3.87)</td>
<td>44.43 (3.84)</td>
<td>44.78 (3.99)</td>
<td>0.2870</td>
</tr>
<tr>
<td>Device SimK ave</td>
<td>46.99 (4.60)</td>
<td>46.44 (4.43)</td>
<td>46.95 (4.73)</td>
<td>0.0022</td>
</tr>
<tr>
<td>Calc SimK steep</td>
<td>49.95 (5.65)</td>
<td>49.25 (5.65)</td>
<td>50.52 (6.50)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Calc SimK flat</td>
<td>44.89 (4.05)</td>
<td>45.12 (4.26)</td>
<td>45.34 (4.55)</td>
<td>0.3240</td>
</tr>
<tr>
<td>Calc SimK ave</td>
<td>47.22 (4.77)</td>
<td>47.19 (4.91)</td>
<td>47.93 (5.454)</td>
<td>0.0035</td>
</tr>
<tr>
<td>Kmax</td>
<td>54.21 (6.29)</td>
<td>54.90 (6.14)</td>
<td>56.46 (6.68)</td>
<td>0.0007</td>
</tr>
<tr>
<td>CLMI_axi</td>
<td>11.20 (5.41)</td>
<td>11.00 (5.29)</td>
<td>12.23 (5.83)</td>
<td>0.0022</td>
</tr>
<tr>
<td>CLMI_Spotaxi</td>
<td>53.57 (5.37)</td>
<td>53.18 (5.10)</td>
<td>54.24 (5.78)</td>
<td>0.0004</td>
</tr>
<tr>
<td>PCLMI_axi</td>
<td>–2.46 (1.07)</td>
<td>–2.60 (1.06)</td>
<td>0.1123</td>
<td></td>
</tr>
<tr>
<td>PCLMI_Spotaxi</td>
<td>–8.27 (0.95)</td>
<td>–8.39 (1.07)</td>
<td>0.0192</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Galilei</th>
<th>Pentacam</th>
<th>Keratron</th>
<th>p-value (ANOVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device SimK steep</td>
<td>44.71 (4.26)</td>
<td>44.27 (3.73)</td>
<td>45.00 (4.41)</td>
<td>0.2377</td>
</tr>
<tr>
<td>Device SimK flat</td>
<td>40.65 (3.60)</td>
<td>40.57 (3.18)</td>
<td>42.13 (2.83)</td>
<td>0.1974</td>
</tr>
<tr>
<td>Device SimK ave</td>
<td>42.88 (3.86)</td>
<td>42.42 (3.38)</td>
<td>43.57 (3.59)</td>
<td>0.1900</td>
</tr>
<tr>
<td>Calc SimK steep</td>
<td>44.89 (4.40)</td>
<td>44.81 (4.09)</td>
<td>45.70 (4.83)</td>
<td>0.3608</td>
</tr>
<tr>
<td>Calc SimK flat</td>
<td>40.74 (3.75)</td>
<td>41.35 (3.51)</td>
<td>42.17 (3.54)</td>
<td>0.2626</td>
</tr>
<tr>
<td>Calc SimK ave</td>
<td>42.82 (4.01)</td>
<td>43.08 (3.72)</td>
<td>43.93 (4.12)</td>
<td>0.3464</td>
</tr>
<tr>
<td>Kmax</td>
<td>50.83 (4.46)</td>
<td>52.64 (4.21)</td>
<td>52.50 (5.06)</td>
<td>0.0169</td>
</tr>
<tr>
<td>CLMI_axi</td>
<td>12.38 (4.16)</td>
<td>14.61 (4.12)</td>
<td>14.02 (4.52)</td>
<td>0.2024</td>
</tr>
<tr>
<td>CLMI_Spotaxi</td>
<td>50.01 (4.42)</td>
<td>51.22 (4.03)</td>
<td>51.37 (4.91)</td>
<td>0.2430</td>
</tr>
<tr>
<td>PCLMI_axi</td>
<td>–2.66 (0.56)</td>
<td>–3.03 (0.75)</td>
<td>0.2242</td>
<td></td>
</tr>
<tr>
<td>PCLMI_Spotaxi</td>
<td>–7.85 (0.66)</td>
<td>–8.17 (0.60)</td>
<td>0.0880</td>
<td></td>
</tr>
</tbody>
</table>
a cross-linking procedure. Interestingly, the OSUCTT-calculated SimKs followed the same pattern as other anterior parameters, with the small-cone Placido having the highest values and the pure Scheimpflug the lowest. However, this pattern disappeared in the native SimKs reported by the devices. The relationship between measured SimKs reflects the differences in the algorithms of each device for simulating manual keratometry. Again, it is not possible with the current study design to determine which device produced a SimKs that were closest to Ks from manual keratometry. The differences and similarities between the three technologies in measurements of the same subject are shown in Figures 4A and B which shows the native device and the corresponding displays from OSUCTT using the same scales and display features.

Kmax is a single point measurement, compared to CLMI_spot which is an average over the 2 mm diameter region of greatest curvature. As an average, one might expect CLMI_spot to show less variability than a single point measurement, which was demonstrated in the current study, with a larger standard deviation and a higher mean value in Kmax than in CLMI_spot. In addition, it has been reported that the precision of single point measurements on corneal maps is poor. Thus, one might also expect CLMI_spot to be more robust than Kmax in evaluating response to treatment, such as corneal collagen cross-linking. This will require further study by investigating post-cross-linking data overtime.

CLMI_axi has been found to be an accurate indicator of keratoconus in a series of known keratoconic eyes. This study demonstrates that while there are significant differences, although clinically not relevant, with the measurements between specific topographic/tomographic instruments (Keratron compared to Galilei and Pentacam), the CLMI values are still predictive of the diagnosis of keratoconus.

This study presents CLMI_axi values for a small set of postrefractive ectasia eyes. The small n is likely underpowered to detect differences between devices. However, these eyes have simulated keratometric values in the normal range (Ave K of 42.68, 42.42 and 43.56 diopters respectively, for Galilei, Pentacam and Keratron instruments), but the CLMI_axi values are similar or higher than those of keratoconus, 12.39, 14.61 and 14.01 diopters respectively, indicating substantial asymmetry in surface shape. CLMI calculated from axial data in normal eyes has been reported at 0.95 (n = 78), compared to 8.66 (n = 25) for keratoconic eyes. Early diagnosis of keratoconus and postrefractive ectasia has become crucial with the emergence of corneal collagen cross-linking treatments which may slow, halt or reverse the progression of the disease. CLMI may prove of greater clinical utility than SimKs in the case of postrefractive ectasia.

The posterior CLMI (PCLMI_axi) is reported for each group. There have been no published data on normal eyes for PCLMI_axi. The values are –2.46 and –2.60 diopters for the Galilei and Pentacam respectively, for keratoconic corneas –2.66 and –3.04 diopters for the ectasia corneas using axial data. Converting the posterior dioptic values to account for the refractive index difference in order to compare with the anterior CLMI, the values would be 20.76 and 21.94 diopters for keratoconus, 22.44 and 25.65 diopters for ectasia respectively. This compares to the anterior values of 11.20, 11.00, 12.39 and 14.61 diopters for the axial CLMI on the Galilei and the Pentacam for the keratoconic and ectasia eyes respectively. The converted posterior CLMI is on average almost twice (1.84) the magnitude of the anterior CLMI, indicating that the physical size of the asymmetry on the posterior surface is greater than that on the anterior surface. This is illustrated in Figure 5, which shows the anterior and posterior best-fit sphere (BFS) elevations from the same subject as Figures 4A and B. Note that the average curvature of the anterior surface is less (BFS radius = 7.41 mm) than that of the posterior surface (BFS radius = 6.10 mm). From these maps, it can be easily appreciated that the maximum elevation on the posterior surface is larger physically than the corresponding feature on the anterior surface. However, the magnitude of the greater posterior surface asymmetry is buried in the conversion to diopters due to the much smaller difference in index of refraction between the cornea and aqueous at the posterior surface, compared to the larger difference between air and cornea on the anterior surface. This deserves further evaluation to determine, if it could be a more sensitive measure of early ectasia and keratoconus.

CONCLUSION

The cone location and magnitude index (CLMI) may be calculated using data from various topographic and tomographic devices. Although the different technologies may yield significantly different results, the magnitude of the differences are likely not clinically relevant in the management of ectatic disorders. The small-cone Placido tends to produce larger dioptic values on the order of about 1 diopter in keratoconus. The pure Scheimpflug and combined Scheimpflug/Placido devices are more similar in their measured values. The CLMI calculation remains valuable in predicting keratoconus from the observed data. Posterior CLMI may offer another valuable measure of
Fig. 4A: Comparison of native device display of anterior axial maps from pure Scheimpflug, combination Scheimpflug/Placido and pure Placido systems (upper, middle and lower respectively) and the corresponding OSUCTT maps which use the same display features and color scale. Note the similarities between systems in the OSUCTT displays that are more difficult to appreciate in the native displays.

asymmetric steepening of the cornea. Baseline calculations in normal eyes are necessary to validate the posterior CLMI for keratoconic and postrefractive surgery ectasia eyes. Stratification of disease and monitoring for small amounts of progression over time remain challenges in the management of these diseases.30
Comparison of Placido, Scheimpflug and Combined Dual Scheimpflug-Placido Technologies in Evaluating Anterior and Posterior Curvature

Fig. 4B: Comparison of native device displays of posterior axial maps from pure Scheimpflug and combination Scheimpflug/Placido (upper and lower respectively), compared to standard OSUCTT displays. Note that the pure Scheimpflug system shows the largest negative dioptric values in blue which correspond to the greatest curvature on the posterior surface. The OSUCTT display uses red to correspond to the greatest curvature values on the posterior surface which in this case are greater values in the negative direction.

Fig. 5: Best-fit sphere (BFS) elevation maps from the anterior surface (left) and the posterior surface (right), from the same subject as shown in Figures 4A and B, illustrating the physically larger maximum elevation on the posterior surface compared to the anterior surface.

REFERENCES

ABOUT THE AUTHORS

Thomas F Mauger
Chairman, Department of Ophthalmology, The Ohio State University, Ohio, USA

Ashraf M Mahmoud
System Analyst, Department of Ophthalmology, The Ohio State University, Ohio, USA

Cynthia J Roberts (Corresponding Author)
Professor, Department of Ophthalmology, The Ohio State University, Ohio, USA, e-mail: roberts.8@osu.edu

Lena V Chheda
Assistant Professor, Department of Ophthalmology, The Ohio State University, Ohio, USA

Rebecca A Kuennen
Assistant Professor, Department of Ophthalmology, The Ohio State University, Ohio, USA

Andrew J Hendershot
Assistant Professor, Department of Ophthalmology, The Ohio State University, Ohio, USA

Richard G Lembach
Professor, Department of Ophthalmology, The Ohio State University, Ohio, USA