Xerostomia, its Association with Oral Manifestation and Ocular Involvement: A Clinical and Biochemical Study

1Deepak Daryani, 2Gopakumar R
1Reader, Department of Oral Medicine and Radiology, KMCT Dental College, Kozhikode, Kerala, India
2Principal, MAHE Institute of Dental Sciences, MAHE Union Territory Puducherry, Puducherry, India

Correspondence: Deepak Daryani, No. 2, Defence Colony, 1st Main, Indira Nagar, Bengaluru-560038, Karnataka, India
e-mail: drdeepakdaryani@yahoo.co.in

ABSTRACT

Introduction: Xerostomia is the subjective symptom of dryness of mouth. Although xerostomia is not a disease, it may herald the onset or signal the presence of a number of serious systemic diseases and condition.

Objective: The study was conducted to evaluate oral manifestations associated with xerostomia, to establish relation between salivary gland function and lacrimal gland function in individuals with xerostomia and to establish the changes in composition of saliva in patients with xerostomia.

Materials and methods: The study is randomized case-control study involving a total of 60 adult individuals. The study group consisted of 30 adult individuals reporting with chief complaint of xerostomia. Control group consisted of 30 healthy age and gender matched individuals. Each group was further divided into five subgroups according to the age. Patients with known cause of xerostomia like diabetes, salivary diseases, radiation therapy, chemotherapy, xerogenic medications were excluded from the study. A detailed case history was taken, the associated oral symptoms and clinical signs were recorded. The study population was subjected to xerostomia questionnaires to assess the severity of dry mouth. Sialometry was done to assess the salivary gland function by measuring unstimulated whole saliva, stimulated whole saliva and stimulated parotid saliva. Sialochemistry of collected saliva was done and concentration of salivary electrolytes and total protein was assessed. All the subjects were given ophthalmic examination to evaluate lacrimal gland function.

Results and conclusion: Xerostomia is a distressing symptom affecting patients’ quality of life. It affects females more than males. Unstimulated whole saliva is the better indicator of salivary gland function. Salivary concentration of sodium, chloride and total protein is higher in patients with xerostomia. Multiglandular hypofunction may be phenomenon coexisting with xerostomia which often goes undiagnosed.

Keywords: Sialometry, Sialochemistry, Salivary gland hypofunction (SGH), Stimulated parotid saliva (SPS), Stimulated whole saliva (SWS), Unstimulated whole saliva (UWS).

INTRODUCTION

Saliva is the physiological fluid of the oral cavity. As well as keeping the mouth moist and comfortable, saliva plays a vital, everyday role in protecting our general health and well-being. Reported estimates of the prevalence of xerostomia range from 12 to 39%.1 Although dry mouth is not widely recognized, research suggests that there may be as many as one in five people suffering from the effects of dry mouth at sometime in their life. Xerostomia is the fourth most distressing symptom known. Xerostomia is also known to be associated with other nonoral symptoms like dry throat, dry eyes, dry skin, complaints of ocular dryness have been reported in 39% of xerostomic patients.2 It has been recently reported that among several components, changes in sodium, chloride and phosphate concentration of whole saliva and parotid saliva have great potential in assessing salivary gland function. It is also hypothesized that multiglandular hypofunction may be phenomenon coexisting with xerostomia which often goes undiagnosed.3

This clinical study explores the relationship between severity of xerostomia, actual salivary gland hypofunction and oral manifestation. A correlation of xerostomia is also made with lacrimal gland function and sialochemical composition in respect to electrolytes and total protein.

MATERIALS AND METHODS

The study is randomized case-control study involving a total of 60 adult individuals. The study group consisted of 30 adult individuals with complaint of xerostomia. Control group consisted of 30 healthy age and gender matched individuals. Each group was further divided into five subgroups according to the age. Patients with known cause of xerostomia like diabetes, salivary diseases, radiation therapy, chemotherapy, xerogenic medications were excluded from the study. Written informed consent was obtained from each patient after the aims and methodology of the study were explained.

A detailed case history was taken, the associated oral symptoms and clinical signs were recorded. The study population was subjected to xerostomia questionnaires to assess the severity of dry mouth. Sialometry was done to assess the salivary gland function by measuring unstimulated whole saliva.
(UWS), stimulated whole saliva (SWS) and stimulated parotid saliva (SPS). Sialochemical analysis of collected saliva was done and concentration of salivary electrolytes and total protein was assessed. All the subjects were given ophthalmic examination to evaluate tear flow rate and lacrimal gland function.

A student’s t-test was applied to statistically determine significant difference between groups, gender and interaction between each other. One way analysis of variance (one way ANOVA) was applied to determine significant difference within age groups. Mann-Whitney U-test was applied to determine nonparametric values. Pearson’s correlation coefficient was applied to determine correlation between two variables. Xerostomia questionnaire by PC Fox et al\(^4\) and visual analog scale for xerostomia by Sathishchandra Pai et al\(^5\) were used to assess the severity of hyposalivation and quality of life. Patients were asked for the symptoms of burning sensation, glossodynea, dysphagia, difficulty in speaking, dysguesia (altered taste sensation) and reported if present. Oral mucositis assessment scale (OMAS) (Sonis et al 1999)\(^6\) was adapted to report the clinical features present in the patients having xerostomia. Mucosal wettability was assessed by tongue blade test. Caries data were expressed as decayed, missing and filled teeth (DMFT).

Whole saliva (stimulated and unstimulated) was collected by using spit method. Unstimulated parotid saliva was collected by using custom-made apparatus which was fabricated by modifying the design of Carlson Crittenden. Stimulated parotid saliva was also collected directly by using gutta-percha to dilate the Stenson’s duct followed by inserting needle with butterfly canula. Saliva sampling was done between 11:00 AM and 2:00 PM. Patients were forbidden any oral intake or smoking for at least 1 hour prior to saliva collection. Two percent solution of citric acid was used for stimulating the salivary glands. Saliva samples were collected in graduated cylinder and salivary flow rate was determined in milliliters per minute. The collected saliva was given for sialochemical analysis. Sodium, potassium and chloride in saliva were determined by using ion-selective electrode technology. Calcium and phosphates were measured by using spectrophotometry analysis. Total protein in saliva was measured by Biuret method. The salivary pH was determined by using Multistix\(^R\) SG reagent strips. For detection of Candida, swab of oral mucosa was taken and subjected to periodic acid schiff.

All the patients under study group were subjected to ophthalmologic test (i.e Shirmers test, Rose-Bengal test and tear film break-up time test) for evaluating the lacrimal gland function. All the subjects were subjected to hematological examination which consists of total count, differential count, peripheral smear, hemoglobin percentage, mean corpuscular hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin concentration. Study population, were also subjected to random blood sugar and RA factor analysis to rule out any systemic disease.
The patients with xerostomia have higher occurrence (66.66%) of erythema, mucositis at all the sites than that of controls (3.33%) with buccal mucosa being the most common site. Occurrence of ulceration did not differ significantly between cases and controls, although buccal mucosa (Z = –4.858, p < 0.000) was the most common site of occurrence of ulceration in the study group. Occurrence of depapillation of tongue was higher in xerostomic patients than in controls (Z = –3.658, p < 0.000). Patients with xerostomia had more dry and sticky oral mucosa (83.33%) due to decreased wettability than that of the controls (3.33%). Subjects with xerostomia had caries prevalence significantly higher (DMFT average 12.2) than that in controls (DMFT average 6.9). The DMFT index did not vary significantly within gender or within age groups.

Lacrimal gland function analysis suggested that individuals with xerostomia had decreased lacrimal flow rate (≤ 5 mm/min) than that of controls. Also the occurrence of dry eyes was higher in study group (16.66%) than that of controls (0%). Tear flow rate did not vary significantly with gender or with age.

Sialochemistry results suggested that the mean salivary concentration of sodium (t = 3.760, p < 0.00), chloride (t = 6.015, p < 0.00) and total protein (t = 2.441, p < 0.018) were significantly higher in subjects with xerostomia than that of their normal counterparts (Fig. 4). The mean salivary concentration of electrolytes, calcium, phosphate and total protein did not vary within gender and age groups.

The salivary pH analysis showed that saliva of individuals with xerostomia was more acidic (p < 0.028) than that of controls, whereas acidity of saliva does not vary with gender or with age.

The incidence of candida was found to be higher in study group (30%) than as compared to the controls (3.33%) (Z = –3.920, p < 0.000).

Study suggested that there is positive correlation between salivary gland hypofunction and lacrimal gland hypofunction. Unstimulated whole saliva is more significantly correlated to lacrimal gland hypofunction (Fig. 5).

The study did not show statistically significant correlation between salivary gland hypofunction and sialochemical changes in terms of salivary electrolytes and total protein.

DISCUSSION

Xerostomia is the subjective sensation of dry mouth that mostly results from salivary gland hypofunction but rarely may also occur due to psychiatric causes. The study showed that more number of females suffered from xerostomia than males. 7-10 Females suffer more with psychological factors, such as depression, anxiety, and stress than males and these psychological factors play an important role in subjective oral dryness. Studies have also stated that women are more susceptible to certain medical conditions known to affect salivary secretion, for example Sjogrens syndrome, rheumatoid arthritis, scleroderma, hypothyroidism, eating disorders, etc.11 The study suggested that the patients complaining of xerostomia belong to relatively younger age group. This was in contrast with earlier studies.8-10 This can be due to the fact that we did not include those subjects who had xerostomia due to known cause like chronic use of medications, systemic diseases, radiation therapy, etc. (exclusion criteria). Aging per se has no significant association with xerostomia.11 Earlier studies have shown that xerostomia is more prevalent in the older age group, this may be explained by the fact that older people suffer more commonly with systemic diseases and are on multiple...
medications as compared to younger age group which may directly or indirectly cause xerostomia.

Patient complaining of dry mouth, actually suffered from salivary gland hypofunction as detected by sialometric study. Unstimulated whole saliva and stimulated parotid saliva were significantly lower in xerostomic subjects. Unstimulated whole saliva was found to be better indicator of xerostomia than stimulated whole saliva. Unstimulated whole saliva reflects basal salivary flow rate and is present in mouth for more than 14 hours a day as compared to stimulated saliva which is in mouth for a maximum of 2 hours. Hence, a decrease in unstimulated saliva is more significantly associated with xerostomia than stimulated saliva. On comparing whole saliva with parotid saliva, whole saliva is better indicator of xerostomia as it contains contribution from submandibular and sublingual salivary glands secreting mucins, a family of O-linked glycoprotein which gives saliva its lubricatory properties. Parotid saliva lacks mucins, hence a decrease in parotid saliva will not affect lubricating effect of saliva and thereby may not contribute significantly to the feeling of dry mouth. However, parotid saliva analysis have an advantage over whole saliva in that it is a pure secretion from the salivary gland whereas whole saliva may have contributions from gingival crevicular fluid, sputum, food debris, etc.

Xerostomic patients were significantly associated with the symptoms of mucositis like burning sensation, glossodynia, dysphagia, difficulty in speech and dysguesia than the controls. It supports the statement that burning mouth is associated with decreased salivary flow rate. The study also supports the role of saliva in taste sensitivity. Both transport and solubilization of gustatory stimulants are dependent on salivary flow. It may also support the mechanistic basis for the relationships between saliva and taste perception pointing to the salivary ionic environment of taste cells as being critical in gustatory signal transduction. This may also support the hypothesis that dysguesia, burning mouth and xerostomia with no established etiology may be different expressions of the same oral neuropathy, merely representing a disorder of peripheral pain pathways.

Individuals with xerostomia have higher occurrence of erythema at all the sites than that of controls, buccal mucosa being the most common site. Xerostomia-induced mucositis occurs on the movable mucosa, rarely affecting the hard palate or the gingivae. The erythema can be caused due to inflammation as a result of increased friction due to decreased lubrication in salivary gland hypofunction or as a result of candidal infection. The findings may signify the lubricating, cleansing and antimicrobial properties of saliva on the oral mucosa. Ulceration is not a common clinical feature associated with xerostomia and is mostly a secondary sequelae to existing mucositis. Subjects with xerostomia had significantly higher occurrence of caries than that of controls signifying that saliva has a protective role in preventing caries due to its properties of flushing action, buffering capacity, remineralization of teeth and its antibacterial action.

Saliva of subjects with xerostomia had significantly lower salivary pH (acidic saliva) when compared to controls. This can be explained by the fact that bicarbonate concentration of saliva correlates with salivary flow. A decrease in salivary flow rate decreases the bicarbonate ion concentration resulting in decreased buffering capacity of saliva accounting for decreased salivary pH. The detection of pseudohyphae of candida from intraoral site was significantly higher in subjects with xerostoma/salivary gland hypofunction than that of controls, signifying that the hyphal form of Candida population in the oral cavity increases as the salivary flow decreases. The results also signify the protective role of saliva against Candida.

Salivary gland hypofunction has positive correlation with lacrimal gland hypofunction. UWS was found to be more significantly correlated to lacrimal gland hypofunction than SWS and SPS. Hence, it may be suggested that basal salivary flow is associated more with lacrimal flow than the functional salivary flow. Findings may also imply the importance of unstimulated whole saliva as a better diagnostic tool than stimulated whole saliva and stimulated parotid saliva in determining the association between salivary function and lacrimal function. These findings may suggest the possibility of multiglandular hypofunction which may be coexisting with xerostomia but remains undiagnosed.

Sialochemistry results showed that the concentration of sodium, chloride and total protein was significantly higher in xerostomic patients than in controls. It suggests that even though in patients with xerostomia the salivary flow rate was low and ductal cells had more time available for absorption, the sodium and chloride were comparatively less reabsorbed indicating a possible dysregulation in the absorption mechanism in the ductal cells. The significantly higher concentration of total protein in saliva of xerostomic patients suggests possible inflammation resulting in protein leakage from the serum.

Two individuals in the study group had decreased salivary flow rate, dry eyes and significantly higher concentration of sodium and chloride and lower concentration of phosphate. Minor salivary gland biopsy of these individuals showed lymphocytic infiltration in the gland suggesting presence of subclinical Sjogrens syndrome.

These findings also support the hypothesis that in Sjogrens syndrome metaplastic epithelial cells and epimyoepithelial cell islands (periductal lymphocytic infiltration) that replace the normal ductal cells are not capable of effectively resorbing the high sodium and chloride content of the primary secretion, despite the low flow rate.

Results also suggest sialochemistry as an adjunctive aid in diagnosis and assessment of degree of pathosis in Sjogrens syndrome. This is true especially in initial phase of Sjogrens syndrome however, in the advanced stage it may not be possible due to lack of saliva making sialometry highly diagnostic in such situations.

Thus, it should be mandatory that every patient with xerostomia is subjected to dry eye test, sialometry and
sialochemistry to rule out subclinical Sjögren syndrome. In the very least the findings of the study shows that a correlation exists between salivary gland function, lacrimal gland function and sialochemical changes (in terms of sodium, chloride and total protein) in patients with xerostomia per se. Further researches are required to be done on patients with dry mouth, so as to find the exact cause and relationship between salivary gland function, sialochemical changes and lacrimal gland function.

REFERENCES

11. Navazesh M. How can oral health providers determine if patients have dry mouth? JADA 2003;134.

