The Normal and Pathological Pigmentation of Oral Mucous Membrane: A Review

Yasin ÇIÇEK DDS, Phd; Ümit ERTAŞ DDS Phd

Abstract

Pigmentation is both the normal and abnormal discoloration of oral mucous membrane. Pigmentation has multifactorial etiology. Most of the pigmentation is physiologic but sometimes it can be a precursor of severe diseases. Melanin pigment irregularities and color changes of the oral tissues could provide significant diagnostic evidence of both local and systemic disease.

The differential diagnosis, clinical, etiology, and histopathological features of pigmentation are discussed and the current literature is reviewed.

Keywords: Pigmentation, gingiva, oral lesions, oral mucosa, Peutz-Jeghers syndrome, Burtonian line.

Introduction

Pigmentation is a discoloration of the oral mucosa or gingiva due to the wide variety of lesions and conditions. Oral pigmentation has been associated with a variety of endogenous and exogenous etiologic factors. Most pigmentation is caused by five primary pigments. These include: melanin, melanoid, oxyhemoglobin, reduced haemoglobin, and carotene. Others are caused by bilirubin and iron.

Melanin

Melanin, a nonhemoglobin derived brown pigment, is the most common of the endogenous pigments and is produced by melanocytes present in the basal layer of the epithelium. Melanocytes have a round nucleus with a double nucleus membrane and clear cytoplasm lacking desmosomes or attachment plates. Melanin accumulates in the cytoplasm, and the melanosome is transformed into a structureless particle no longer capable of melanogenesis. The number of melanocytes in the mucosa corresponds numerically to that of skin; however, in the mucosa their activity is reduced. Various stimuli can result in an increased production of melanin at the level of mucosa including trauma, hormones, radiation, and medications. Thyrosinase activity is present in premelanosome and melanosomes but absent in melanin granules.

Melanoid

Granules of melanoid pigment are scattered in the stratum lucidum and stratum corneum of the skin. Initially it was assumed melanoid was a degradation product of melanin, but more recently it has been shown that such a relationship is highly improbable. Melanoid imparts a clear yellow shade to the skin.
Oxyhemoglobin and Reduced Hemoglobin
Oxyhemoglobin and reduced hemoglobin are pigments resulting from hemosiderin deposits. The skin color is affected by the capillary and venom plexuses shining through the skin.³

Carotene
Carotene is distributed in the lipids of the stratum corneum and stratum lucidum and gives a deep yellow color to the skin. It is found in higher concentrations in more women than in men.

Pigmented lesions of the oral cavity are of multiple origin. Different classifications are used at this time. Some researchers divide the lesions into two main groups as either endogenous or exogenous lesions.⁷ Brocheriou et al.⁹ subdivides pigmented lesions as follows:

- Non tumoral pigmentation
- Non melanin pigmented tumors or tumor like lesions
- Benign melanin pigmented tumors
- Malignant melanomas

In several articles on oral pigmentation, Dummett and others implicate many systemic and local factors as causes of changes in oral pigmentation.⁹

Epidemiology
Oral pigmentation occurs in all races of man.¹⁰¹¹ There were no significant differences in oral pigmentation between males and females.⁷ The intensity and distribution of pigmentation of the oral mucosa is variable, not only between races, but also between different individuals of the same race and within different areas of the same mouth.⁴ Physiologic pigmentation is probably genetically determined, but as Dummett suggested¹⁰, the degree of pigmentation is partially related to mechanical, chemical, and physical stimulation. In darker skinned people oral pigmentation increases, but there is no difference in the number of melanocytes between fair-skinned and dark-skinned individuals. The variation is related to differences in the activity of melanocytes.⁴ There is some controversy about the relationship between age and oral pigmentation. Steigmann and Amir et al.⁷ stated all kinds of oral pigmentation appear in young children. Prinz²⁰, on the other hand, claimed physiologic pigmentation did not appear in children and was clinically visible only after puberty.

Clinical Characteristics
The gingivae are the most frequently pigmented intraoral tissues.⁴,¹⁰,¹⁴ Microscopically, melanoblasts are normally present in the basal layers of the lamina propria.¹⁵,¹⁶ The most common location was the attached gingiva (27.5%) followed in decreasing order by the papillary gingiva, the marginal gingiva, and the alveolar mucosa.⁴,¹⁷,¹⁶

The total number of melanophores in the attached gingival was approximately 16 times greater than in the free gingival.¹⁹ The prevalence of gingival pigmentation was higher on the labial part of the gingiva than on the buccal and palatal/lingual parts of the arches.¹⁷ The shade of pigment was classified as very dark brown to black, brown, light brown-yellow.⁷ Melanin pigmentation of the oral tissues usually does not present a medical problem, but patients complain of black gums.
Many systemic and local factors are caused by changes in oral pigmentation. Some of the important factors are discussed below.

Amalgam Tattoo

The pigmentation of the oral mucous membrane by tooth restoration material (amalgam) is a common finding in dental practice. Amalgam pigmentation is generally called amalgam tattoo.

Melanoma

Melanoma is a cancerous condition of the melanocyte. Special corpuscles in this cell, known as melanosomes, contain the necessary enzyme (tyrosine) to transform amino acids into melanin. Melanocytes are found among the
basal cells of the epidermis. Histopathologically, the mucosal epithelium is abnormal with large atypical melanocytes and excessive melanin. Malignant melanoma of the oral mucosa affects both sexes equally usually after 40 years of age. The great majority of the lesions (about 70-80%) occur on the palate, upper gingival, and alveolar mucosa. Initially there usually is a solitary small asyntomatic brown or black macule.

Physiologic Pigmentation

Physiologic pigmentation of the oral mucosa is clinically manifested as multifocal or diffuse melanin pigmentation with variable prevalence in different ethnic groups. Melanin is normally found in the skin of all people. (Figure 1)

In dark skinned persons the gingiva may contain melanin pigment to a greater extent than the adjacent alveolar mucosa. The melanin pigment is synthesized in specialized cells, the melanocytes, located in the basal layer of the epithelium. The melanin is produced as granules. The melanosomes are stored within the cytoplasm of the melanocytes, as well as in the cytoplasm of adjacent keratinocytes. Melanocytes are embryologically derived from neural crest cells that eventually migrate into the epithelium. If pigmented gingiva is surgically resected, it will often heal with little or no pigmentation; therefore, surgical procedures should be designed so as to preserve the pigmented tissues.

Peutz-Jeghers Syndrome

Peutz-Jeghers syndrome (intestinal polyposis) is a genetic disorder characterized by mucocutaneous pigmentation and hamartomas of the intestine. It manifests itself as freckle-like macules about the hands, perioral skin, and intraorally to include the gingiva, buccal, and labial mucosa. Pigmented spots are 1 to 10 mm in diameter. Pigmented spots are particularly found on the lower lip and buccal mucosa but rarely on the upper lip, tongue, palate, and gingiva.

Smoker’s Melanosis

Smoker’s melanosis is a benign focal pigmentation of the oral mucosa. It tends to increase significantly with tobacco consumption. Tobacco smokers have significantly more oral surfaces pigmented than non-tobacco users. Clinically, the lesion usually presents as multiple brown pigmented macules less than 1 cm in diameter, localized mainly at the attached labial anterior gingival and the interdental papillae of the mandible. Smoker’s melanosis is more common in females usually after the third decade of life.

Antimalaria Drug Use

Several antimalarial drugs are known to be capable of inducing intraoral melanin pigmentation. These drugs include: quinacrine, chloroquine, and hydroxychloroquine. Long-term use may cause pigmentation of the oral mucosa. The pigmentation of the oral mucosa is described as slate-grey in color, bearing some resemblance to pigmentation caused by silver arsphenamine.

Figure 1. Physiologic pigmentation.

Figure 2. Smoker’s melanosis.
Minocycline Use
Minocycline is a synthetic tetracycline that is commonly used in the treatment of acne vulgaris. Although tetracycline causes pigmentation of bones and teeth, minocycline alone is also responsible for soft tissue pigmentation. It is usually seen as brown melanin deposits on the hard palate, gingiva, mucous membranes, and the tongue.

Heavy Metals
Heavy metals absorbed systemically from therapeutic use or occupational environments may discolor the gingiva and other areas of the oral mucosa. Bismuth, arsenic, and mercury produce a black line in the gingiva which follows the contour of the margin. Lead results in a bluish red or deep blue linear pigmentation of the gingival margin (Burtonian line). Exposure to silver causes a violet marginal line, often accompanied by a diffuse bluish-grey discoloration throughout the oral mucosa.

Addison’s Disease
Addison’s disease or primary adrenocortical hypofunction is due to adrenocortical damage and hypofunction. Bronzing of the skin and increased pigmentation of the lips, gingivae, buccal mucosa, and tongue may be seen. Oral pigmentation may be the first sign of the disease. A biopsy of the oral lesions shows acanthosis with silver-positive granules in the cells of the stratum germinativum. Melanin is seen in the basal layer.

Periodontal Diseases
Periodontal diseases often produce discolorations of the oral mucosa. The pigmentation is worsened by gingivitis, which increases vascular permeability and allows the heavy metals access to the soft tissues. Melanin re-pigmentation is related to after surgical injury.

Hemachromatosis
Hemachromatosis (bronze diabetes) is a chronic disease characterized by the deposition of excess iron (ferritin and hemosiderin) in the body tissues, resulting in fibrosis and functional insufficiency of the involved organs. Hyperpigmentation may appear both in skin and mucous membranes (oral and conjunctiva). Gingival or mucosal pigmentation is reported to occur in
15 to 25% of patients with hemachromatosis. The oral mucosa shows diffuse homogeneous pigmentation of gray-brown or deep brown in about 20% of the cases. The buccal mucosa and the attached gingiva are the most frequently involved sites.

HIV Infection

In patients infected with human immunodeficiency virus (HIV), progressive hyperpigmentation of the skin, oral mucosa, fingernails, and toenails have been reported being related to primary adrenocortical deficiency and to zidovudine (azidothymidine) therapy in some cases. Clinically, oral pigmentation appears as irregular macules with brown or dark brown color. The tongue, buccal mucosa, and palate are the most commonly affected sites.

Conclusion

The integrity of the oral mucous membrane is maintained by a wide range of complex factors including those dependent on adequate nutrition. A wide range of conditions has been described in the past which depend on the absence or reduction of certain specific nutritional factors, particularly vitamins.

The recognition, identification, and clinical assessment of pigmentation is of great importance because of the possible risk of serious systemic disease, such as melanoma, various syndromes, and the side effects of drugs.

References

About the Author