Laparoscopic vs Robotic Surgery in Colorectal Cases

Shalmali Alva

ABSTRACT

Minimally invasive techniques have become the new norm in the arena of colorectal cases with surgeons preferring laparoscopic commonly and robotics occasionally and sometimes hand-assisted laparoscopic surgery to deal with a variety of conditions in the colorectal region. Minimally invasive techniques have resulted in better and smaller postoperative scars, lesser postoperative pain, reduced hospital stay, and resultant faster return to daily activities and work. The aim of this review article is to compare the short-term outcomes of laparoscopic colorectal surgery and robotic colorectal surgery as also the cost vs overall benefit of both techniques. The studies have been taken from reputed institutes (both teaching and non-teaching) from across the world and have been sourced from Medline, Cochrane Central, and PubMed which have compared laparoscopic vs robotic techniques in colorectal cases on various parameters.

The two methods have shown fairly comparable duration of hospital stay and postoperative recovery and places performing higher load of robotics are having cost benefit over open surgeries in colorectal cases owing to faster discharge from hospital comparable to laparoscopic approach. This promising factor will probably enable further widespread use of robotics in colorectal cases.

Keywords: Colorectal surgery, Cost vs benefit, Laparoscopic surgery, Learning curve, Robotic surgery.

How to cite this article: Alva S. Laparoscopic vs Robotic Surgery in Colorectal Cases. World J Lap Surg 2018;11(1):43-47.

Source of support: Nil

Conflict of interest: None

INTRODUCTION

The last two and half decades have seen a rapid and ever-growing presence of minimally invasive surgical techniques in every arena of surgery. When laparoscopy made its advent in the surgical world more than two and half decades ago, it met with lot of skepticism about intraoperative complications, postoperative complications, reasons for conversion to open surgery, and prohibitive cost compared with open surgery. Now, we are in an era where laparoscopy surgery is the new norm. Along with increasing number of surgeons able to handle a variety of cases in completely minimally invasive ways, the faster recovery and discharge from hospital set-up have dramatically brought down costs too.

Similar to the environment laparoscopy met with in the 1990s, robotics has also met with the contention being put forward about exorbitant costs and lack of adequate trained personnel. As robotics is not being practiced in every surgical center as of now and also not for every surgical procedure, the appreciation and uptake of robotics in surgery have been slower. It has also been noticed that robotics has already made a huge impact in urologic and pelvic surgery compared with certain other areas. Notably, in urologic and pelvic and rectal surgeries, robotics has been a boon, as these are areas with minimal room for surgical manipulation and with robotic arms, the surgeon has greatly increased degrees of freedom as well as tactile feedback for precise movements. The technological advantages of the robotic system are a three-dimensional surgical view using a stable camera platform, fine and free movements of the robotic arm in the surgical fields, tremor elimination, motion scaling, dexterity, and ambidextrous capability. Despite tremendous advances in laparoscopy, there are still persisting limitations. Of late, the emergence of robotic-assisted colectomy combines the advantages of laparoscopic colectomy with advantages of open approach including better body mechanics and better visualization.

Although robotic colorectal surgery has proven to be comparable to laparoscopic colorectal surgery in terms of postoperative hospital stay and recovery time, robotic surgery has been studied only on few large-scale studies yet to conclusively comment on various parameters. Hence, the use of robotic colorectal surgery will require further evaluation and widespread use for deliberating on long-term outcomes. Hence, in this article, we will only study the short-term outcomes of laparoscopic vs robotic colorectal surgery (Table 1).

Aim

The aim of this study is to compare laparoscopic colorectal procedures with robotic colorectal procedures, their intraoperative advantages, hospital stay, recovery time, and cost vs benefit analysis over a short-term course.
<table>
<thead>
<tr>
<th>Name of author</th>
<th>Date of publication</th>
<th>Type of study</th>
<th>Patient subset</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anuradha Bhama et al.</td>
<td>Jul 14, 2015</td>
<td>Comparative studies included RCT and cohort studies and propensity score matching</td>
<td>ACSNSQIP database 11,477 cases taken (year 2013)</td>
<td>Hospital stay shorter in robotic colectomy. Conversion rates lesser in robotic colectomy</td>
</tr>
<tr>
<td>Scott C Dolejs et al.</td>
<td>Sep 21, 2016</td>
<td>Bivariate data analysis and logistic regression modeling</td>
<td>ASCNSQIP targeted colectomy database from 2012 to 2014; cases numbering 25,998</td>
<td>In robotic colectomy, postoperative hospital stay was shorter but mean operative time was longer by 40 minutes</td>
</tr>
<tr>
<td>Binghong Xie et al.</td>
<td>Nov 2014</td>
<td>Meta-analysis of RCT and non-RCT</td>
<td>Subset of 1,229 patients who underwent total mesorectal excision</td>
<td>Robotic-assisted cases, lower conversion rate to open, and lesser incidence of positive circumferential margin. Operative time, recovery outcomes, length of hospital stay: there was no difference in robotic and laparoscopic cases</td>
</tr>
<tr>
<td>Brian Ezekian et al.</td>
<td>Mar 10, 2016</td>
<td>RCT</td>
<td>Patients who underwent colectomy between 2012 and 2013: 15,976 cases, of which only 498 (3%) were robotic-assisted</td>
<td>Similar perioperative outcome but robotic procedure was associated with longer operative time than laparoscopic procedure</td>
</tr>
<tr>
<td>Chang W Kim et al.</td>
<td>Feb 5, 2014</td>
<td>Review of one RCT and 39 case series and 29 comparative studies</td>
<td>Patients included from January 2001 to January 2013</td>
<td>Robotic cases had comparable short-term outcome to laparoscopic or open surgical cases. Cost factor less economical than laparoscopic procedure</td>
</tr>
<tr>
<td>Deborah S Keller et al.</td>
<td>Aug 31, 2013</td>
<td>Multivariate analysis from PPD</td>
<td>Total of 17,265 laparoscopic cases and 744 robotic cases over a 30-month period</td>
<td>Robotic cases had higher cost and slightly longer mean average operative time than laparoscopic cases</td>
</tr>
<tr>
<td>Gary B Deutsch et al.</td>
<td>Nov 2, 2011</td>
<td>Retrospective review between November 2004 and November 2009</td>
<td>171 cases (robotic 79 and laparoscopic 92)</td>
<td>No statistical difference in length of hospital stay. Time to return of bowel function and need for patient-controlled analgesia</td>
</tr>
<tr>
<td>Huirong Xu et al.</td>
<td>Aug 16, 2014</td>
<td>Meta-analysis of 7 studies of robotic and laparoscopic right colectomy (last search Nov 2013)</td>
<td>234 robotic cases and 415 laparoscopic cases</td>
<td>Robotic has longer operative time but shorter hospital stay and lower estimated blood loss compared with laparoscopic. Equivalent clinical outcome</td>
</tr>
<tr>
<td>Jun S Park et al.</td>
<td>Jun 30, 2010</td>
<td>Consecutive case series (Prospective case series)</td>
<td>From December 2007 to June 2009; 41 consecutive patients</td>
<td>Robotic was safe and effective for low rectal cancer</td>
</tr>
<tr>
<td>Katelin A Mirkin et al.</td>
<td>Dec 2017</td>
<td>Multivariate analysis and propensity score matching</td>
<td>Of 15,112 patients, 5.1% underwent robotic and 94.9% underwent laparoscopic surgery (US National cancer database from 2010 to 2012) reviewed for stage one to three adenocarcinoma colon</td>
<td>Robotic offers comparable oncologic outcome to laparoscopic approach. Robotic appears to offer better long-term survival</td>
</tr>
<tr>
<td>Leonardo Solaini et al.</td>
<td>Dec 7, 2017</td>
<td>Meta-analysis</td>
<td>Between January 1, 2000 and May 11, 2017, 8,257 patients were included from 11 articles</td>
<td>Operative time shorter for laparoscopic cases. Conversion to open surgery is lesser in robotic cases. No difference in mortality or postoperative complications</td>
</tr>
</tbody>
</table>

(Cont’d…)
Laparoscopic vs Robotic Surgery in Colorectal Cases

WJOLS

MATERIALS AND METHODS

The 14 studies included in the review article include single-center and multicenter studies, randomized controlled trials (RCTs), as well as retrospective studies and meta-analysis conducted in reputed institutes across the world published during the period from 2001 to 2017. The research material for the review article was sourced from Medline, PubMed, and Cochrane Central.

DISCUSSION

This review article deals with the comparison of laparoscopic surgery and robotic surgery in colorectal cases and has taken into account 14 articles which have a patient subset ranging from 2000 to 2017 included in retrospective studies, case-control studies, and meta-analysis.

The data from the various studies have shown that robotic colectomy can prove to be a safe and feasible approach comparable to laparoscopic colectomy. The short-term outcomes of robotic colectomy have indeed been favorable.

Weber et al reported performing the first robotic colonic resection using the Da Vinci system in 2001. Since then, studies have been done on robotic colectomies and also comparing laparoscopic and robotic colorectal surgeries. Previous studies have suggested an improved conversion rate using robotic-assisted laparoscopic resection over laparoscopic resection in rectal cancer resections. Recent meta-analyses have affirmed the statistically significant difference.

It has been estimated that the learning curve is reached after approximately 20 cases for robotic colectomy even for surgeons who lack significant laparoscopic experience. Because the robot affords improved visualization and manipulation, facilitating precise dissection within confines of bony pelvis, the use of robot-assisted resection for patients with rectal cancer has been increasing. Many groups have described application of technology to benign conditions like complicated diverticulitis also.

There are now several nonrandomized comparison trials reporting lower conversion rates in robotic than in laparoscopy surgery, even in patients with tumors less than 5 cm from the anal verge. This is likely due to the improved precision, retraction, and visualization afforded by the robotic arms. Most studies report no increase in complication rates including anastomotic leak. Most significantly, robotic colectomy is associated with lower risk of conversion to open surgery.

The robotic vs laparoscopic resection for rectal cancer trial addresses this issue. Multiple meta-analyses conclude that robotic surgery does not appear to be associated with significantly longer operative times than laparoscopy. A three-phase learning curve has been
Robotic surgery, however, comes with higher costs than laparoscopic surgery or open surgery.\(^{26,33-37}\) Of course, theoretically, potential benefits, such as functional and oncologic ones are better in robotic rectal surgery. But it may still not justify the higher costs at all centers. As with all new advances in surgery, as robotics in surgery become more commonplace, the costs also are bound to come down and make it more feasible to be readily applied for a variety of procedures. As the learning curve for robotic surgery is also shorter than laparoscopic surgery, a bright future awaits widespread robotics in surgery.

CONCLUSION

Robotic and laparoscopic colectomy have comparable intraoperative efficacy, with lesser conversion to open surgery seen in robotic-assisted cases. The postoperative morbidity, duration of hospital stay, and need for patient-controlled analgesia are comparable in most cases to laparoscopic surgery. In rectal cases, robotic surgery offers better operative expertise due to the presence of narrow bony pelvis limiting laparoscopic surgery. Robotic surgery has also proved effective in malignancy, as rates of positive circumferential margin are low and comparable to laparoscopic or open surgery. As the learning curve for robotic surgery is shorter than for laparoscopic surgery, and as the use of robotics becomes more widespread, the cost of robotic surgery will also likely be affordable by all.

REFERENCES

