Thyroid Sarcoidosis as a Rare Explanation of Resistance to Radioactive Iodine in Graves’ Disease

Richard J Egan, 2Rakan Kabariti, 3Daniel L Hopkins, 4Michael J Stechman, 5David M Scott-Coombes

ABSTRACT

Background: Sarcoidosis is a multiorgan idiopathic inflammatory disease that involves the thyroid gland in 1 to 4.6% of the cases.

Case report: We report a case of a 36-year-old man who was diagnosed with Graves’ disease and initially treated with block and replace regimen followed by radioactive iodine (RAI), both of which were unsuccessful. The patient subsequently underwent an uncomplicated total thyroidectomy. Subsequent histological evaluation of the thyroid tissue demonstrated granulomatous inflammation consistent with a diagnosis of sarcoidosis. This was the index presentation of this diagnosis with no previous symptoms or clinical manifestations related to sarcoidosis.

Conclusion: Using this case as an example, we therefore conclude that relative resistance of Graves’ thyrotoxicosis to treatment may be due to a novel underlying presentation of sarcoidosis.

Clinical significance: Sarcoidosis of the thyroid gland should be considered as part of the clinical differential diagnosis in cases of treatment-resistant thyrotoxicosis.

Keywords: Case report, Graves’ disease, Sarcoidosis, Thyroidectomy.

How to cite this article: Egan RJ, Kabariti R, Hopkins DL, Stechman MJ, Scott-Coombes DM. Thyroid Sarcoidosis as a Rare Explanation of Resistance to Radioactive Iodine in Graves’ Disease. World J Endoc Surg 2018;10(2):142-144.

Source of support: Nil

Conflict of interest: None

BACKGROUND

Sarcoidosis is a severe idiopathic inflammatory disease that is characterized by granuloma formation. The disease is a multiorgan process, with pulmonary sarcoidosis the most common manifestation. Endocrine dysfunction is relatively common, with pituitary infiltration or hyperprolactinemia seen in up to a third of patients. Less than 10% of patients have hypercalcemia and hypercalciuria, predominantly due to extrarenal hydroxylation of vitamin D to the biologically active 1,25-dihydroxyvitamin D. Thyroid involvement is rare and is seen in 1 to 4.6% of cases.

We present a case of apparently isolated thyroid sarcoidosis manifesting as a cause of treatment-resistant Graves’ thyrotoxicosis. This rare presentation of sarcoidosis is discussed on the background of current available evidence.
in this patient, which was clinically confined to the thyroid gland.

DISCUSSION

Sarcoidosis has been reported in one study to have a statistical association with both clinical hypothyroidism, predominantly secondary hypothyroidism due to pituitary dysfunction. Both sarcoidosis and Graves’ disease may be associated with higher levels of both TSH and antithyroid peroxidase antibodies. An association between sarcoidosis and autoimmune thyroid disease has also been demonstrated in a literature review evaluating over 3,000 patients. Thyroid involvement can take the form of a nontoxic multinodular goiter or nontoxic nodules, and in cases of sarcoidosis of the thyroid gland, fine-needle aspiration cytology is frequently nondiagnostic or unhelpful. Moreover, a combination of goiter or dominant nodule with coexisting cervical lymphadenopathy can lead to thyroid sarcoidosis either mimicking, or concealing, thyroid malignancy.

To the best of our knowledge, previous case reports of Graves’ thyrotoxicosis exhibiting resistance to antithyroid treatment and RAI treatment, with a concomitant diagnosis of thyroid sarcoidosis, are rare. In other reported cases, a preoperative demonstration of hilar lymphadenopathy with or without hepatosplenomegaly, allowed for a presumptive or confirmed diagnosis of sarcoidosis, prior to operative intervention. The case presented here demonstrated no clinical or radiological features to suggest a preoperative diagnosis of sarcoidosis, with the diagnosis only made postoperatively following histological examination of the thyroid gland.

In one report, biochemical thyrotoxicosis only subsided following the introduction of steroid therapy, following failure of high-dose antithyroid drugs (ATDs) and two courses of RAI to achieve remission. However, in this report, thyroid autoantibodies were negative and thyroid sarcoidosis was assumed, with no formal histological evaluation of thyroid tissue performed. In our case, the patient had failed medical therapy with ATD, and displayed a negligible clinical response to RAI. A similar failure of ATD to control thyrotoxicosis over a period extending to 36 months prior to surgical intervention has also been reported in a patient with thyroid involvement by multifocal sarcoidosis.

Prolonged activation of proinflammatory effector cells, possibly via alternative pathways, has been postulated as a potential mechanism for the apparent resistance to ATD and RAI seen in these reports. Reactivation or recurrence of sarcoidosis following RAI treatment for papillary thyroid cancer has been reported in isolated case reports, possibly due to alterations in immunological function, such as reductions in interleukin (IL)-4, IL-5, and IL-13. The cellular mechanisms responsible for the apparent resistance of the thyroid to treatment are not yet clearly understood and may warrant further investigation.

CONCLUSION

Thyroid involvement in systemic sarcoidosis is a recognized but rare phenomenon, with several clinical manifestations. Relative resistance of Graves’ thyrotoxicosis to treatment with ATD or RAI may suggest a novel underlying presentation of sarcoidosis.

CLINICAL SIGNIFICANCE

Sarcoidosis of the thyroid gland should be considered as part of the clinical differential diagnosis in cases of treatment-resistant thyrotoxicosis.

REFERENCES

4. Hoang TD, Mai VQ, Clyde PW, Gлистер BC, Shakir MK. Multinodular goiter as the initial presentation of systemic sarcoidosis: limitation of fine-needle biopsy. Respir Care 2011 Jul;56(7):1029-1032.