Morphological and Morphometric Study of Vermian Fossa

Archana Singh, Rakesh Gupta

ABSTRACT

Introduction: Vermian fossa (VF) is also known as middle cerebellar fossa of Verga. It is present at lower part of internal occipital crest of occipital bone, over which inferior vermis of cerebellum lies. As very few studies are done on VF, so the present study was conducted.

Objective: To know the incidence, morphology, and morphometry of VF in adult dry human skulls.

Materials and methods: In the present study, 60 dry human skulls were examined for the presence or absence of VF, and shape and depth of VF. Morphometry of VF was done with digital Vernier caliper.

Results: In the present study, incidence of VF was 66.7% (in 40 skulls). Among observed VF (40), 32 (80%) were type I (triangular) and 8 (20%) were of type II (quadrangular) in shape, and 75% were shallow and 25% were deep. Average length of VF was 16.98 ± 4.3 mm, and width was 13.52 ± 2.25 mm.

Conclusion: In the present study, incidence of VF was quite higher than other studies but almost similar to other Indian studies. Although the sample size of the present study is less, this may provide some help to neurosurgeons, clinicians, and morphologist as the studies on VF are very less.

Keywords: Cerebellum, Occipital bone, Vermian fossa, Vermis.

INTRODUCTION

Vermian fossa is also known as middle cerebellar fossa of verga. It is a small depression at the lower part of internal occipital crest over which the inferior vermis of cerebellum lies. On the inner aspect of occipital bone, a median elevation is present on the squamous part known as internal occipital crest which descends from internal occipital protuberance. Internal occipital crest gives attachment to falx cerebelli. Internal occipital crest diverges around the foramen magnum, and diverged limbs of it bounds a fossa, which may vary in shape and size. Sometimes it may be divided by a bony ridge into upper and lower parts. Very little work has been done on morphometric and morphological aspects of the VF. Hence, the present study was aimed to determine the incidences of VF in the adult human dry skull.

RESULTS

In the present study, total 60 skulls were observed and in 40 skulls (66.7%) VF was present and in 20 skulls (33.3%) it was absent (Graph 1). Among the 40 observed VF samples, 32 (80%) were triangular (type I) (Fig. 2 and 3) and 8 (20%) were quadrangular (type II) (Fig. 4). The average length of VF was 16.98 ± 4.3 mm, and the average width was 13.52 ± 2.25 mm.
Graph 2) and 8 (20%) were quadrangular (type II) (Fig. 3 and Graph 2) in shape, and 30 (75%) were shallow and 10 (25%) were deep (Graph 3). On morphometric analysis of VF, average length was 16.98 ± 4.54 mm, and width was 13.52 ± 2.25 (Table 1).

DISCUSSION

On the internal surface of squamous part of temporal bone, internal occipital protuberance is present from where ridged sagittal and horizontal extension divides the internal surface of squamous temporal bone into four compartments. Upper two fossae accommodate the occipital pole of the cerebral hemisphere and lower two fossae are occupied by the cerebellar hemisphere. A prominent internal occipital crest gives attachment to falx cerebelli. This internal occipital crest diverges and covers a V-shaped fossa dorsal to foramen magnum known as VF. It lodges the inferior cerebellar vermis, which includes tuber, pyramid, uvula, and nodule.

Well-marked VF was reported in animals like lemur and marmoset and was absent in the macaque monkey and Cercopithecus by East.
Berge and Bergman6 reported the incidence of VF to be only 4\% in their study, and no other details were studied, while Kale et al7 reported 8.2\% VF in Turkish skull and for the first time they classified the fossa morphologically into type I (triangular), type II (quadangular), and type III (atypical). They noted 53.84\% type I, 30.76\% type II, and 15.38\% as type III VF. While in the present study, incidence of VF was 66.7\%, which is quite high.

Murlimanju et al8 have found VF in 71.42\% Indian human skulls, 76\% were of type I, 8\% of type II, and 16\% of type III. Average length of VF was 13.6 mm, and breadth was 11.9 mm.

Yadav et al9 and Ranjan et al10 did similar studies on human skull. Yadav et al9 found incidence of VF in 72.7\% specimens, in 72.5\% cases fossa was triangular (type I), in 10\% quadangular (type II), and in 17.5\% shape of fossa was atypical (type III), while Ranjan et al10 observed VF in 80\% specimens, which is quite higher than in the present study. In 70.45\%, bone shape of VF was triangular, in 79.5\% quadangular, and in 21.59\% bones, it was atypical in shape. In the present study, in 80\% the shape of fossa was triangular and in 20\% cases it was quadangular, while there was no atypical shape found.

Kale et al7 measured the VF and found average length of fossa to be 27.8 mm, and width was 11.9 mm, while in the present study, length was 16.98 + 4.54 mm, which is lower than that reported by Kale et al,7 and width was 13.52 + 2.25 mm, which is almost similar to that in Kale et al’s study.7 Comparisons between other Indian studies and the present study are shown in Table 2, measured findings of VF are almost similar to the present study (Table 2).

The anatomy of cerebellum along with vermis is of interest to many clinicians, and it has been reported that some cases of cerebellar cortical dysplasia are associated with vermal malformations.11 So these data may be valuable in studies of diseases or malformations that cause change in shape and size of fossa.

Table 2: Comparison of morphological and morphometric findings of different studies

<table>
<thead>
<tr>
<th>Kake et al7</th>
<th>Murlimanju et al8</th>
<th>Yadav et al9</th>
<th>Ranjan et al10</th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>VF</td>
<td>Turkish</td>
<td>Indian</td>
<td>Indian</td>
<td>Indian</td>
</tr>
<tr>
<td>Incidence (%)</td>
<td>8.22</td>
<td>71.40</td>
<td>72.70</td>
<td>80</td>
</tr>
<tr>
<td>Average length (mm)</td>
<td>27.8</td>
<td>13.6</td>
<td>14.2</td>
<td>13.4</td>
</tr>
<tr>
<td>Average breadth (mm)</td>
<td>18.4</td>
<td>11.9</td>
<td>12.1</td>
<td>12.1</td>
</tr>
</tbody>
</table>

CONCLUSION

The present study may provide some anatomical data to the neurosurgeons, clinicians, and morphologists on VF, as the studies on VF are very less. The data of the present study can be correlated with surgically relevant considerations. Detailed and accurate knowledge of the variability of the human morphology and morphometry improves the diagnosis and therapeutic performance. The clinician who operates intracranial images or interprets radiological images should be aware of the anatomical variations. The incidence of VF is higher in our study as compared with previous study and it might be because of racial variations. We believe that this study can also provide clue about the shape of the inferior cerebellar vermis. The present study might also help those who are involved with pathologies around foramen magnum, such as Arnold Chiari malformation. The future implication of this study includes correlation of the data with surgically relevant considerations.

REFERENCES