Cerebrospinal Fluid Bioprofiling

ABSTRACT

Introduction: Meningitis is one of the most serious health issues. The World Health Organization (WHO) defines it as inflammation of the meninges, the covering of the brain and spinal cord. Most common cause is by infection. It is always reported with very aggressive and devastating outcome on health and continues to cause significant morbidity and mortality worldwide. The current study is focused on bioprofiling of cerebrospinal fluid (CSF) which can be aided for early diagnosis of meningitis and helpful for differentiating meningitis from nonmeningitis for deciding treatment regimen by the treating clinician.

Objective: To study the biochemical parameters in meningitis patients and compare CSF bioprofile.

Materials and methods: It is an observational analytical study with a total of 60 subjects aged between 18 and 60 years, conducted in Father Muller Medical College Hospital, Mangaluru, for a duration of 3 months, after obtaining clearance from the institutional ethics committee. The samples sent for the analysis to the clinical biochemistry laboratory were collected and the same were used for the study after obtaining the informed consent from the patient. The traumatic samples and systemic disorder patient samples were excluded form the study. The parameters analyzed were: CSF C-reactive protein (CRP), CSF electrolytes, CSF aspartate transaminase (AST), and CSF lactate dehydrogenase (LDH) apart from the routine CSF protein and glucose in both group I (meningitis) and group II (nonmeningitis).

Results: The statistical analysis was performed using the Statistical Package for the Social Sciences (SPSS) version 23, with the significance value of 0.05. The mean of the CSF CRP was 2.0 ± 1.12 in group I compared with group II 0.09 ± 0.15; CSF AST was 17.42 ± 6.24, 5.1 ± 3.8 in groups I and II respectively; and CSF LDH was 211.1 ± 49.0, 23.71 ± 10.29 in groups I and II respectively, with p-value < 0.001 (highly significant).

Conclusion: The CSF CRP was found to be increased in patients with meningitis compared with the negative CSF, and the significant increase in the CSF AST and LDH; this knowledge can help to aid the routine CSF protein and glucose to differentiate the meningitis before the result of the culture is reported for deciding the treatment regimen.

Keywords: Aspartate transaminase, Cerebrospinal fluid, Cerebrospinal fluid C-reactive protein, Cerebrospinal fluid lactate dehydrogenase.

OBJECTIVES

- To study the biochemical parameters in patients diagnosed with meningitis.
- To compare the CSF bioprofile with the nonmeningitis patients.

INTRODUCTION

Meningitis is one of the most serious health issues and incident among the children is always alarming. The WHO defines it as: “Meningitis is inflammation of the meninges, the covering of the brain and spinal cord.” It is most often caused by infection (bacterial, viral, or fungal), but can also be produced by chemical irritation, subarachnoid hemorrhage, cancer, and other conditions. Apart from the infection, it has always been reported with very aggressive and devastating outcome on health. Despite the effectiveness of current antibiotics and treatment, meningitis continues to cause significant morbidity and mortality worldwide. The case fatality rate for adult was approximately 25% and transient or permanent neurological morbidity occurred in 21 to 28% of survivors. The early diagnosis and treatment play a very crucial role in the outcome of patient. The signs and symptoms the person presents with meningitis include fever, malaise, vomiting, and petechial rashes in some cases. Among the younger children, the signs of meningeal irritation like neck stiffness, Kernig’s sign, and Brudzinski’s sign can be seen. Moreover, inability to feed, vomiting, drowsiness, and convulsion can even be observed in younger patients.

The diagnostic criteria conventionally used to identify the meningitis include: CSF biochemical analysis, Gram stain and culture. By the biochemical analysis of the CSF, it is helpful for treating meningitis earliest when culture reports are negative. Hence, the current study is focused on the Bioprofiling of CSF which can be reported at the earliest and aiding for early diagnosis of meningitis and helpful for differentiating between bacterial and viral meningitis for deciding the treatment regimen by the treating clinician.
MATERIALS AND METHODS

This is an observational analytic study, conducted at the Central Biochemistry Laboratory, Medical College Hospital Laboratory. A total of 60 subjects were included in the current study, for a duration of 3 months. Inclusion criteria: age group between 18 and 60 years; male/female patients diagnosed with meningitis were included in the study. Exclusion criteria: traumatic sample, systemic disorders like liver disease, multiple sclerosis, and amyloidosis. The CSF and blood samples were collected from the clinical biochemistry laboratory and stored in deep freezer for the purpose of study. Study subjects were divided into cases (positive for meningitis) and control (negative for meningitis) based on the clinical diagnosis.

The other information regarding the patient was accessed from Hospital Information System (HIS). The collected CSF sample was analyzed for the following parameters in COBAS-6000 autoanalyzer: CSF CRP (immunoturbidometric method); CSF sodium, potassium, chloride (ISE, Indirect method); CSF AST (kinetic, enzymatic method), and CSF LDH (kinetic, lactate to pyruvate method).

Statistics: The result was analyzed by student t-test for the significant difference between the groups, with the significant level alpha as less than 0.05, Pearson’s correlation to evaluate the strength of association between the variables, and statistical software SPSS version 23 was used for analysis. The sample size was calculated by using the SamplePower 3-SPSS software for minimum 80% power and significance of less than 0.05 for the study.

RESULTS

The results of the variables included in the study were analyzed. The study population was divided into cases diagnosed with the meningitis, and controls who were negative for the meningitis. The demographic details of the cases and controls are given in Table 1. The student t-test is used to compare the mean in cases and controls to find the significance in CSF samples (Table 2) and in serum samples (Table 3). Correlation of CSF variables is shown in Table 4.

DISCUSSION

The patients were treated as viral and bacterial meningitis based on the WHO criteria after analyzing the CSF sample.
Cerebrospinal Fluid Bioprofiling

Cerebrospinal Fluid Bioprofiling

Indian Journal of Medical Biochemistry, January-June 2018;22(1):47-49

the serum sample. The CRP was found to be increased in the meningitis patient, showing the increased leakiness of the membrane in the meningitis, and even increased levels of the albumin in CSF, demonstrating the damage to the membrane caused due to the inflammatory reactions and events occurring. The study conducted by Rekha et al9 also showed the statistical difference in the analyzed variables in the meningitis, aiding for early diagnosis and initiation of the treatment. The CRP has a good strength of association with the changes in CSF protein and even activity of enzymes like AST in CSF. Electrolytes did not show much significant difference to decide the meningitis or negative for it. But CRP and AST, LDH enzymes can be added to the routine CSF glucose and protein to diagnose a case of meningitis.

CONCLUSION

From the current study, the parameters have shown a good relation with the protein and glucose levels in CSF sample of meningitis cases. The CRP, LDH, and enzymes like AST can be used in conjunction with the current panel of the CSF analysis in biochemistry for differentiating the different types of the meningitis. As in case of bacterial meningitis, the level of CSF CRP, and LDH was significantly increased with the good strength of association with the change in the levels of CSF glucose and protein.

REFERENCES

The table shows the strength of association among the variable in CSF sample. *p-value < 0.05 is significant; **p-value < 0.001 highly significant

Table 4: Correlation of the CSF variables for the assessment of strength of association

<table>
<thead>
<tr>
<th>Pearson association (r value)</th>
<th>CSF protein</th>
<th>CSF glucose</th>
<th>CSF CRP</th>
<th>CSF AST</th>
<th>CSF LDH</th>
<th>CSF sodium</th>
<th>CSF chloride</th>
<th>CSF potassium</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF protein</td>
<td>-0.150</td>
<td>-0.150</td>
<td>0.350*</td>
<td>0.362*</td>
<td>0.209</td>
<td>-0.027</td>
<td>-0.460</td>
<td>0.155</td>
</tr>
<tr>
<td>CSF glucose</td>
<td>-0.347*</td>
<td>-0.347*</td>
<td>0.581**</td>
<td>0.274</td>
<td>-0.279</td>
<td>0.461</td>
<td>0.942**</td>
<td>-0.152</td>
</tr>
<tr>
<td>CSF CRP</td>
<td>0.350*</td>
<td>0.374</td>
<td>0.374</td>
<td>-0.126</td>
<td>0.274</td>
<td>0.676*</td>
<td>-0.347*</td>
<td>0.343</td>
</tr>
<tr>
<td>CSF AST</td>
<td>0.362*</td>
<td>0.581**</td>
<td>0.581**</td>
<td>-0.126</td>
<td>-0.232</td>
<td>0.279</td>
<td>-0.227</td>
<td>-0.274</td>
</tr>
<tr>
<td>CSF LDH</td>
<td>0.209</td>
<td>0.374</td>
<td>0.374</td>
<td>-0.126</td>
<td>-0.232</td>
<td>0.279</td>
<td>-0.227</td>
<td>-0.274</td>
</tr>
<tr>
<td>CSF sodium</td>
<td>-0.027</td>
<td>0.741***</td>
<td>0.279</td>
<td>0.152</td>
<td>-0.232</td>
<td>0.279</td>
<td>0.343</td>
<td>0.942**</td>
</tr>
<tr>
<td>CSF chloride</td>
<td>-0.460</td>
<td>-0.274</td>
<td>-0.242</td>
<td>-0.412</td>
<td>0.243</td>
<td>0.343</td>
<td>0.942**</td>
<td>-0.152</td>
</tr>
<tr>
<td>CSF potassium</td>
<td>0.155</td>
<td>0.676*</td>
<td>0.461</td>
<td>0.343</td>
<td>0.025</td>
<td>-0.152</td>
<td>-0.152</td>
<td></td>
</tr>
</tbody>
</table>