Etiology and Treatment of Bisphosphonate-related Osteonecrosis of the Jaw

Antonio Crispino

ABSTRACT

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a severe adverse drug reaction, consisting of progressive bone destruction in the maxillofacial region of patients. Dental screening and adequate treatment are fundamental to reducing the risk of osteonecrosis in patients under antiresorptive or antiangiogenic therapy, or before initiating the administration. The treatment of BRONJ is generally difficult and the optimal therapy strategy is still to be established. This article elucidates the clinical indications and mechanism of action of bisphosphonates (BPs), reports some of the clinical diagnostic criteria for BRONJ, and describes the histopathological criteria for BRONJ diagnosis, the potential triggering pathways, and the available treatment strategies. Keywords: Bisphosphonates, Jaw, Osteonecrosis.

INTRODUCTION

Bisphosphonate-related osteonecrosis of the jaw has been defined as exposed jaw bone for longer than 8 weeks in a patient who has received current or previous treatment with a BP medication without evidence of local malignancy or prior radiotherapy to the site.1 Bisphosphonates inhibit bone resorption by decreasing the action of osteoclasts, which are cells that break down bone. Also, BPs inhibit the increased osteoclastic activity and skeletal calcium release into the bloodstream induced by various stimulatory factors released by tumors.2 It is expected that BPs will arrest bone loss and increase bone density, decreasing the risk of pathologic fracture resulting from progressive bone loss. Osteonecrosis is progressive and may lead to extensive areas of bony exposure and dehiscence.

Clinical Aspects

The clinical features of BRONJ may vary according to the patient’s clinical condition, their medical and dental background, and drug administration time and method, but it is usually characterized by an exposure of jaw bone surrounded by oral mucosa with inflammatory signs and pain symptoms.3 The BRONJ incidence has been estimated to be 5:143,000 patients/year, who have undergone dental procedures, with an estimate of 0.8 to 12% in patients receiving intravenous administration for controlling malignant neoplasms and 0.00038 to 0.06% in patients treated with oral BP.4 The BRONJ etiopathogenesis has been widely investigated and it is not yet fully defined. Currently, the interactions between bone metabolism, infection, local trauma, and theories of bone remodeling suppression, antigenic effect, and oral mucosa toxicity have been studied to elucidate its etiopathogenesis.5

Three stages of ONJ have been proposed and this classification is currently in use:
1. Stage 5: exposed bone with no infection and otherwise asymptomatic.
2. Stage 2: exposed bone with evidence of infection with or without purulent discharge.
3. Stage 3: exposed bone with infection and extension radiographically to the inferior border of the mandible or sinus floor in the maxilla or presence of an extraoral fistula or pathologic fracture.6

There are discussions whether to include a stage 0 category to represent cases with no bone exposure, but with nonspecific symptoms or radiographic findings not explained by an odontogenic cause in patients on antiresorptive medications.7 The International Task Force did not recommend the use of stage 0 as it may potentially overdiagnose ONJ in a large number of individuals, who may never actually develop ONJ.8,9

Specific Laboratory Investigations

In addition to radiographic imaging, a complete blood count may help to assess the state of the patient in terms of possible infection. Cultures of the infected bone tend to yield normal oral flora; however, cultures of draining abscesses may be helpful in tailoring antibiotic treatment.10
Assays to monitor markers of bone turnover, such as serum or possibly urine N-telopeptide (NTx) and C-telopeptide (CTx) levels, may help in the future diagnosis of BRONJ. The NTx and CTx are fragments of collagen that are released during bone remodeling and turnover. The BPs reduce NTx and CTx levels. Monitoring of the risk of BRONJ development through the various phases of BP therapy may also be possible in the future using serum CTx levels, which are thought to be reliable indicators, although they are subject to some daily variations.11,12

According to recent literature, angiogenesis suppression may play an important role in development of BRONJ.13

Radiological Features

Radiographic findings of BRONJ are not specific and are found in other conditions like osteomyelitis, osteoradionecrosis, and metastatic bone lesions also. According to previous publications, the most commonly imagined finding in osteonecrosis of the jaws is osseous sclerosis. This can vary from subtle thickening of the lamina dura and alveolar crest to attenuated osteopetrosis like sclerosis. Other findings like osteolysis, soft tissue swelling, periosteal new bone formation, periapical lucencies, oroantral fistula, and sequestrs are likely to correspond with the presence of infection. It is imagined that differential diagnosis includes chronic sclerosing osteomyelitis, osteoradionecrosis, bone metastasis, and Paget’s disease.14

Risk Factors

A number of risk factors have been identified for ONJ:7

- Antiresorptive drug intake.
- Minor oral surgery (e.g., dental extractions, periodontal surgery)—it is still unknown how significant the risk is with minor oral surgery.

Other factors that may increase the risk of ONJ include:

- Concomitant use of steroids
- Antiangiogenic agent intake (used in various cancer therapies)
- Diabetes
- Smoking (perhaps)

While the American Association of Oral and Maxillofacial Surgeons group included antiangiogenics in their causative medication list, the evidence that this class of drugs alone increases the ONJ risk is based on case reports and requires substantiation.

Another most peculiar feature of BRONJ is the exclusive localization of osteonecrosis to the maxillary and mandibular bones. A few recent studies have reported that long-term BP therapy may induce osteonecrosis in bone of the hips as well as external ear canal that indicates possible systemic phenomenon of BP therapy. Mandibular and maxillary bones have two important components, such as alveolar bone and periodontium. These two structures of the jaw bone show particularly high bone turnover.15,16

TREATMENT

Dental Management

Aside from recognizing signs of the disease, it is important for dental patients at risk of developing ONJ to maintain meticulous oral hygiene and regular dental visits. In general, dental care should be optimized in individuals at risk for developing ONJ. It is important to maintain optimal dental health of both hard and soft tissues with regular professional maintenance and very good home care.17

Any surgical therapy should be minimized, especially if there is an alternative (endodontic treatment instead of extraction, for example). Any minor oral surgery—including extractions and periodontal surgery—should include antibiotic prophylaxis, both systemic and topical, careful surgical technique, minimizing sharp bony edges, and providing primary closure over bony wounds, wherever possible. There is no need for interruption of oral BP therapy, such as that taken for osteoporosis therapy, either before or after the minor surgical procedure.18 For those on high-dose BP or denosumab intravenous (IV) therapy or with multiple risk factors for ONJ, it is recommended that the antiresorptive therapy be withheld following the oral surgery until the surgical site has healed with mature soft tissue closure over the wound. This typically requires 4 to 6 weeks. For individuals at a high risk of ONJ, it is critical to achieve primary closure and utilize perioperative antibiotics up to the week following and chlorhexidine mouth rinses immediately before and for the weeks following until soft tissue coverage has been achieved.

Other routine restorative, hygiene, orthodontic, and endodontic dentistry can be conducted as usual.19

Osteonecrosis of the Jaw Management

Most patients will not require surgical intervention. A patient failing conservative therapy or whose ONJ is progressing should be referred to and managed by an oral surgeon. As not all of them might be familiar with managing these patients, it is necessary to refer them to an experienced oral surgeon for appropriate care. This may require traveling to a larger urban center.20 They may refer the patient back to their primary dental caregiver for ongoing care in the presence of persistent ONJ or in its absence following surgical treatment. There are, however, a small number of experienced hospital-based dentists,
who are able to evaluate and manage these patients non-
surgically in consultation with their medical oncologists.
These clinicians are most familiar with this disease and
may be the best to perform nonsurgical therapy and
follow these patients conservatively.21

For stages 5 and 2, conservative therapy may be all
that is required. Metabolic oral hygiene, preventive
care, topical antibiotic rinses, such as chlorhexidine, and
periodic systemic antibiotics should be used as needed.
Patients require close follow-up with periodic radiographic
assessment of their disease. While many patients are
symptomatic from their ONJ lesions, a significant
number are asymptomatic and require close monitoring
while maintaining excellent oral hygiene and ensuring
that the affected area is clean with monitoring for pro-
gression of disease. 22

Spontaneous resolution of ONJ is possible. Early treat-
ment recommendations discouraged surgical interven-
tion, with conservative therapy continuing indefinitely or
until there was progression of disease. Others have had
reasonable success with surgical management. There is
still no comfortable proven treatment algorithm for the
various stages of the disease. The International Task Force
believes that surgical intervention is required for stage-3
disease and stage-2 patients, who are showing progres-
sion or require continual antibiotic or narcotic analgesic
therapy to control their symptoms.23

Common Initial Treatments

- Minor debridement, including minor sequestrectomy
with elimination of sharp bone edges and sharp tooth
surfaces, if these are symptomatic.

- Advise the patient to maintain local hygiene in areas
of exposed bone (chlorhexidine gluconate 0.12%,
20 mL for 30 seconds three times daily).

- For bacteremia, prescribe systemic antibiotics to
control bacterial infection. The recommended anti-
biotic is amoxicillin, 1,000 mg (5 tablets 3 times
daily for 7 days) or clindamycin, 300 mg (5 capsules
4 times daily for 7 days). The prescriptions listed
above represent a minimum dose. The addition of
250 mg of metronidazole 4 times daily may be
indicated if anaerobic infection is suspected. In
refractory patients or in severe cases, prescribe amoxicil-
lin/clavulanate potassium (Augmentin®), 1,000 mg
(5 tablets 2 times a day). It is important NOT to pre-
scribe systemic antibiotic therapy if there is no infec-
tion (most commonly evidenced by pain) to prevent
the development of resistant bacterial strains.24

- For pain control, prescribe analgesics at the maximum
cumulative dose.

- Mobile segments of bony sequestrum should be
removed without exposing uninvolved bone. Necrotic
bone cannot be resorbed by the osteoclasts (BPs inhibit
osteoclastic activity) and will inhibit healing, so it is
important to remove it.

- The extraction of symptomatic teeth within exposed,
necrotic bone also should be considered.25

CONCLUSION

Exact diagnostic criteria to distinguish BRONJ from
other delayed healing conditions are not known as yet.
According to the recent literature, patients may be con-
sidered to have BRONJ if all of the following four charac-
teristics are present: current or previous treatment with
BPs, exposed or necrotic bone in the maxillofacial region
that has persisted for more than 8 weeks, no history of
radiation therapy to the jaws, and no evidence of cancer
at the site.26

The BRONJ is a multifactorial disease. It commonly
develops in patients who receive either long-term nitrogen-
containing IV BP therapy alone or associated with
invasive dental procedure. Serum vascular endothelial
growth factor levels and morning fasting CtX levels
are useful assessment tools to predict risk and make
appropriate lines of diagnosis and treatment. In cases of
established disease, management strategies are mostly
palliative and empirical.27

REFERENCES

1. Auluck A. How do I manage a patient with biphosphonate-
related osteonecrosis of the jaw (BRONJ). J Can Dent Assoc
2016 May;82:g10.
2. Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR,
Felsenberg D, Gagel RF, Gilsanz V, Guise T, Koka S, et al.
Bisphosphonate-associated osteonecrosis of the jaw: report
of a task force of the American Society for Bone and Mineral
3. Khan AA, Sándor GK, Dore E, Morrison AD, Alshahi M,
Amin F, Peters E, Hanley DA, Chaudry SR, Dempster DW,
et al. Canadian consensus practice guidelines for bisphospho-
ate-associated osteonecrosis of the jaw. J Rheumatol 2008
Jul;35(7):1391-1397.
4. Morrison A, Khan A, Tetradis S, Peters E. Osteonecrosis of
81:f19.
5. Khan AA, Morrison A, Hanley DA, Felsenberg D, McCauley
LK, O’Ryan F, Reid IR, Ruggiero S, Taguchi A, Tetradis S,
et al. Diagnosis and management of osteonecrosis of the jaw: a
systematic review and international consensus. J Bone Miner Res
6. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE,
Mehrotra B; American Association of Oral and Maxillofacial
Surgeons. American Association of Oral and Maxillofacial
Surgeons position paper on bisphosphonate-related

