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ABSTRACT

Aim: To screen the possible antimicrobial activity of a range 
of clinically used, silver-based compounds on cariogenic orga-
nisms: silver diammine fluoride (SDF), silver fluoride, and silver 
nitrate.

Materials and methods: Preliminary screening disk-diffusion 
susceptibility tests were conducted on Mueller–Hinton agar 
plates inoculated with Streptococcus mutans, Lactobacillus 
acidophilus, and Actinomyces naeslundii, organisms known to 
be cariogenic. In order to identify which component of the silver 
compounds was responsible for any antibacterial (AB) effect, 
and to provide controls, the following were also investigated at 
high and low concentrations: sodium fluoride, ammonium fluo-
ride, ammonium chloride, sodium fluoride, sodium chloride, and 
sodium nitrate, as well as deionized water as control. A volume 
of 10 µL of a test solution was dispensed onto a paper disk 
resting on the inoculated agar surface, and the plate incubated 
anaerobically at 37°C for 48 hours. The zones of inhibition were 
then measured.

Results: Silver diammine fluoride, silver fluoride, silver nitrate, 
and ammonium fluoride had significant AB effect (p < 0.05) on 
all three test organisms, although ammonium fluoride had no 
effect at low concentration; the remaining other compounds 
had no effect.

Conclusion: Silver ions appear to be the principal AB agent at 
both high and low concentration; fluoride ions only have an AB 
effect at high concentration, while ammonium, nitrate, chloride 
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INTRODUCTION

The effect of silver as an AB agent for public health care, 
such as for water or milk storage and water purification, 
has been known for centuries.1 This beneficial effect has 
been used in many other contexts, including soft tissue 
wound care,2 bone prostheses, reconstructive orthopedic 
surgery,3 cardiac devices,4 catheters and surgical appli-
ances,5 as well in the form of ionizable silver in fabrics for 
clinical use (to reduce the risk of nosocomial infections) 
and personal hygiene products.1,6,7 New commercial 
contexts continue to be found and promoted.

The AB effect of silver has been suggested to have 
three possible mechanisms:
1. Prevention of cellular respiration: Silver ions are 

thought to bind nonspecifically to bacterial cell 
surfaces, causing disruption of membrane transport 
functions; this disruption then allows silver ions to 
penetrate the microbe.8,9

2. Inhibition of cell division (reproduction): Silver ions 
react with the base pairs of deoxyribonucleic acid, 
thus preventing replication.9-11
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3. Disruption of cell metabolism: Silver ions are highly 
reactive and readily bind to thiol groups (SH) which 
are present in enzymes, denaturing them. The energy 
system of the organism is thereby incapacitated, 
osmotic pressure cannot be maintained, and this leads 
to vital substrate leakage, causing death.1,12,13

These are clearly not mutually exclusive. Indeed, 
other more general effects are anticipated because Ag+ 
is a strong oxidizing agent, reacting with many organic 
compounds and materials.

Lansdown and Williams3 have given a comprehensive 
account of the use of silver in health-related contexts, but 
offer no indication of when it was introduced to dentistry 
as such. It has been claimed that the value of silver nitrate 
was recognized in 1846,14 but no source was given for 
this. The first clear report of clinical observations follow-
ing the treatment of caries with silver nitrate appears to 
be from 1891.15 Miller investigated the action of silver 
nitrate on “ivory” and claimed that it may be protective 
by forming a barrier in the surface of the dentin.16 The 
addition of ammonium hydroxide to a silver nitrate solu-
tion17 converts the acidic, irritating solution (salt of weak 
base and strong acid) to an alkaline one said to give little 
or no irritation to the pulp.14 While numerous investiga-
tions have reported on its disinfectant effect,18-22 its use 
was questioned for its potentially injurious action on the 
contents of vital dentinal tubules and odontoblasts as well 
as the pulp.23 It is said to be have become unpopular in 
medical health care due to the irremovable black stain 
that it causes, and the emergence of antibiotics appeared 
to make it redundant.24

It has been claimed that silver and fluoride ions 
together have a better anticaries effect than either silver 
nitrate or sodium fluoride alone.25 It was then suggested 
that SDF26 might react with the tooth mineral hydroxy-
apatite to form calcium fluoride and silver phosphate, 
which was thought to be responsible for the prevention 
of dental caries and the hardening of existing lesions.27 
A simplified chemical reaction scheme was suggested:

Ca10(PO4)6(OH)2 + Ag(NH3)2F → CaF2 + Ag3PO4 + NH4OH

X-ray diffraction was used to support the conclu-
sion that calcium fluoride (CaF2) and silver phosphate 
(Ag3PO4) are the major products of reaction with SDF.28,29 
However, the relative roles of silver and fluoride were 
not determined, and it is not clear whether the fluoride 
as such improves the anticaries effect in a direct AB. For 
example, Klein et al30 studied a bacterial model system to 
compare four agents in respect of their abilities to inhibit 
carious lesion progression in enamel. They found that 
both silver fluoride (AgF) + stannous fluoride (SnF2) and 
silver nitrate (AgNO3) alone significantly decreased caries 
progression better than did either SDF or chlorhexidine. 

Other clinical investigations have shown the beneficial 
use of SDF in arresting enamel and dentin caries in 
children in vivo.31-33 However, laboratory studies have 
all been on sound or demineralized permanent denti-
tion enamel, while the clinical studies have been on 
the primary dentition. Thus, although no distinction 
is expected, the absence of a direct demonstration of 
equivalence leaves some doubt about comparability. 
Subsequently, using the agar-diffusion method and serial 
dilution, both 12 and 30% SDF were found to have AB 
activity in buccal swab cultures from both high and low 
caries risk pediatric patients.34

The reaction of SDF and AgNO3 with tooth tissue 
components has been studied further.35 SDF produced 
globular particles of CaF2 on the surface of hydroxy-
apatite, but these disappeared on washing. With AgNO3, 
Ag3PO4 crystals were formed which were not dissolved 
on washing, but which darkened, converting gradually 
to metallic silver, on exposure to light. On gelatin, both 
SDF and AgNO3 produced particles of silver which were 
resistant to washing.

Despite the evident importance, very little specific 
work relevant to the subject has been reported in the 
last 50 years. Thus, given the lack of explicit mechanism 
for the effect of SDF, the aim of the present study was to 
determine the relative AB effects on cariogenic organisms 
of silver and fluoride ions in silver- and fluoride-based 
agents used in dentistry by means of diffusion-gradient 
sensitivity testing, i.e., using the disk-diffusion suscepti-
bility test, also known as the agar diffusion test (ADT),36 
which is simple, fast, and reliable.37 This was to ascertain 
whether more elaborate testing would be appropriate.

MATERIALS AND METHODS

Test Principle

Since organisms must vary in their sensitivity to agents, 
testing by means of serial dilution in culture media, while 
feasible, is of low resolution and inefficient. Utilizing the 
continuity of a diffusion gradient from a high concentra-
tion source, the location of the inhibition concentration is 
automatically identified and the distance from the source 
can be used as a proxy for sensitivity, narrowing the range 
required for any subsequent work.

Test Agents

Stock solutions were prepared of each agent and of several 
control compounds with ions in common in a combinato-
rial scheme (Table 1). Thus, Ag(NH3)2F (SDF) (J. Morita 
Corporation, Osaka, Japan), silver fluoride (AgF), silver 
nitrate (AgNO3), ammonium chloride (NH4Cl), ammonium 
fluoride (NH4F), sodium chloride (NaCl), sodium fluoride 
(NaF), and sodium nitrate (NaNO3) (all Sigma Chemical, St. 
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Louis, Missouri, USA) were dissolved in deionized water 
(Milli-Q Plus, Millipore, Billerica, Massachusetts, USA) 
at two concentrations. To avoid adventitious organisms 
which might interfere with the analysis, all solutions were 
filtered using a nonpyrogenic, sterile, single-use syringe 
filter (0.2 µm Super Membrane Acrodisc, Millex-GS, 
Millipore, France). Deionized water was used as a negative 
control. Approximate pH values were estimated using pH 
paper (Macherey-Nagel, Germany), pH electrodes being 
compromised by some of the test solutions.

Due to the very large AB effect subsequently found 
for 400 mg/mL NH4F solution, additional concentrations 
of 100 and 200 mg/mL were also tested in the same way 
for this agent.

Bacteria

Inocula of S. mutans [American Type Culture Collection 
(ATCC) 35668], L. acidophilus (ATCC 9224), and A. naes-
lundii (ATCC 12104), some of the main organisms known 
to be involved in the caries process, were prepared from a 
24-hour anaerobic incubation on blood-agar. Organisms 
were harvested to produce suspensions in sterile brain-
heart infusion media (Oxoid, Unipath, Basingstoke, 
England) to a MacFarland optical density of 0.5 at 660 nm.

Preparation, Incubation, and Reading of Agar 
Diffusion Plates

For each suspension, 20 µL was dispersed onto a Mueller–
Hinton agar plate (pH 7, Oxoid) using the lawn-deposition 
mode of a spiral plater programmed to give a uniform bac-
terial coverage (Autoplate 4000, Spiral Biotech, Norwood, 
Massachusetts USA). All plates were prepared on the same 
day. Ten minutes after plating, 10 µL portions of the test 
solutions were applied to filter paper disks (6 mm diam-
eter, Macherey–Nagel) which had been placed on the agar. 
After 48-hour anaerobic incubation of the plates, inverted, 
at 37°C, the diameter of the zone of inhibition around each 
disk was measured with a Vernier caliper to the nearest 
half-millimeter. The area of inhibition was then calculated 
since the diffused concentration is expected to fall with 

the square of the radius and thus balance the weighting 
of results for larger diameters. The area of the filter paper 
disk (28 mm2) was ignored, treating a diameter of 6 mm 
as zero. All trials were conducted with ten replicates. In 
the event of a filter paper disk separating from the agar, 
the data were dropped. To minimize variation, all plates 
were prepared in one session at a controlled temperature 
(25°C), with constant agar volume.38,39

Statistical Analysis

Statistical tests were conducted in software (Statistical 
Package for the Social Sciences for Windows, version 15, 
SPSS, Chicago, Illinois, USA). Three-way analysis of vari-
ance (agent × concentration × species) (AoV) was followed 
by lower level tests as indicated by the results, applying 
Bonferroni protection as appropriate in post hoc multiple 
comparisons. The significance cut-off was set at α = 0.05.

RESULTS

The three-way AoV indicated highly significant effects for 
all three main factors as well as all interactions (p < 0.001). 
Accordingly, the design was broken down to separate 
high- and low-concentration results.

High Concentration

Two-way AoV (agent × species) showed that A. naeslundii 
was significantly more sensitive than S. mutans (p < 0.001), 
itself significantly more sensitive than L. acidophilus 
(p < 0.001). However, the interaction was significant 
(p < 0.001).

The inhibition zone areas are shown in Graph 1, 
and the numerical comparisons in Table 2. For all silver 
compounds, a circular black zone of reduced silver was 
formed around the paper disk; this was always of a 
smaller diameter than the inhibition zone. AgF, AgNO3, 
SDF, and NH4F had significant bacterial inhibition 
(p < 0.001), while NH4Cl, NaCl, and NaNO3 did not show 
any such effect. The AB effect of NH4F (at high concentra-
tion) was significantly greater than for all other agents for 
S. mutans and A. naeslundii, while for L. acidophilus, NH4F 

Table 1: Test solutions. For NH4F, 100 and 200 mg mL–1 were also tested

Agent
High concentration Low concentration

mg mL–1 mol L–1 [F]/ppm pH mg mL–1 mol L–1 [F]/ppm pH
SDF 380 2.36 38,021 12.5 40 0.25 4,000 12.0
AgNO3 380 2.24 – 5.5 40 0.24 – 7.0
AgF 380 3.00 53,858 12.5 40 0.32 5,670 12.0
NH4Cl 330* – 6.0 40 – 7.0
NH4F 400 194,594 7.0 40 19,459 7.0
NaF –* – –* 40 17,143 10.5
NaCl 400 – 7.0 40 – 7.0
NaNO3 220* – 8.0 40 – 7.0
*Due to limited solubility, high concentration was not possible for NaF, and only limited values for NH4Cl and NaNO3
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Graphs 1A and B as for medium concentration. Two-way 
AoV (species × concentration) showed a clear effect for 
both factors (p < 0.001), as well as significant interaction 
(p < 0.001). Again, there was no significant difference 
between S. mutans and A. naeslundii (p > 0.05); both 
showed a clear dose effect (multiple comparison test, 
p < 0.001). Lactobacillus acidophilus was less sensitive 
than the other two (p < 0.001), there being no AB effect 
at 200 mg/mL.

DISCUSSION

In the mouth, bacteria grow in complex biofilms.38,39 
Hence, the use of an oral biofilm model might be con-
sidered a more appropriate means of simulating the oral 
environment for assessing AB agents.40 However, the cre-
ation of such a model or chemostat is complex, expensive, 
and time consuming. A preliminary in vitro assessment is 
therefore, valuable to determine whether further investi-
gation is warranted. The ADT is the generally accepted 
procedure for determining in vitro sensitivity under 
routine laboratory conditions.39 An ADT is simple to 
perform, relatively reproducible, direct, well-controlled, 
and allows bacteria to grow in a simple biofilm on the 
agar surface. Results can be obtained in a short period 
of time. Nevertheless, it is recognized that the ADT does 
not simulate the clinical environment, and further work 
would follow for a detailed understanding.

It can be noted that the concentrations used in the 
paper disk are necessarily high, and may well be far 
higher than would be feasible in a treatment context, 
simply to provide a large enough gradient and an inhi-
bition zone that can be measured with sufficient resolu-
tion to be discriminatory. It is also true that both pH and 
osmotic effects could be involved. However, these effects 
will be present anyway should such agents be used in 
practice, and still have the relevant gradients in the test 
medium. To disentangle these factors would require 
much more complex experimentation, but in the absence 
of information to the effect that adjustment to either is 
appropriate for better efficacy (with otherwise benign 
species, but noting that osmolarity cannot be reduced 
independently), all that can be done is to test each agent 
as-is, as used clinically. “Adjuvants” would have to be 
explored separately.

In view of the possibility of confounding of results by 
both synergies and interferences between the cations and 
anions, the potentially active moieties were tested sepa-
rately with (reasonably assumed) benign counterions, 
Na+, Cl–, so that such behavior could be disentangled. 
The known reaction products of SDF, i.e., calcium fluo-
ride and silver phosphate, logically should be tested on 
this basis, but, of course, they have very low solubility 

Table 2: Inhibition zone area (mean ± SD, mm2) of S. mutans,  
A. naeslundii, and L. acidophilus for high concentration tests (Table 1)

S. mutans A. naeslundii L. acidophilus
SDF 395.8 ± 15.1a 386.1 ± 44.1a 362.6 ± 23.7a

AgF 423.6 ± 82.4a 528.9 ± 50.3a 208.7 ± 13.9b

AgNO3 177.8 ± 14.9b 225.4 ± 47.4b 171.2 ± 20.8b

NH4F 1666 ± 174c 1437 ± 270c 437 ± 121a

NH4Cl 0d 0d 0c

NaF – – –
NaCl 0d 0d 0c

NaNO3 0d 0d 0c

Deionized water 0d 0d 0c

Within species, values with the same letter are not significantly 
different from each other (p > 0.05). Others are significantly 
different at p < 0.005; SD: Standard deviation

and SDF were significantly more effective than other 
agents, but with no significant difference between them. 
The edge of the inhibition zone for NH4F to S. mutans, A. 
naeslundii, and L. acidophilus was obscure whilst that for 
silver compounds was very sharp.

Low Concentration

The two-way AoV as above showed no significant sen-
sitivity difference between A. naeslundii and S. mutans 
(p > 0.05), although both were significantly more sensitive 
than L. acidophilus (p < 0.001). Again, there was a signifi-
cant interaction (p < 0.001).

Again, for all silver compounds, a circular black zone 
of reduced silver was formed around the paper disk, 
again, smaller than the inhibition zone. The numerical 
comparisons are in Table 3. AgF, AgNO3, and SDF showed 
significant bacterial inhibition compared with the other 
test agents (p < 0.001). Although NH4F showed a high 
AB effect at high concentration, none was shown at low 
concentration. This was investigated further.

Ammonium Fluoride

There was no effect for any species at a concentration ≤ 
100 mg/mL. The results for 200 mg/mL are shown in 

Table 3: Inhibition zone area (mean ± SD, mm2) of S. mutans,  
A. naeslundii, and L. acidophilus for low concentration tests (Table 1)

S. mutans A. naeslundii L. acidophilus
SDF 229.9 ± 24.0a 199.1 ± 6.1a 142.2 ± 40.3a

AgF 217.3 ± 18.7a 217.3 ± 18.7a 81.2 ± 4.7b

AgNO3 213.2 ± 22.7a 199.8 ± 18.4a 155.4 ± 23.5a

NH4F 0b 0b 0c

NH4Cl 0b 0b 0c

NaF 0b 0b 0c

NaCl 0b 0b 0c

NaNO3 0b 0b 0c

Deionized water 0b 0b 0c

Within species, values with the same letter are not significantly 
different from each other (p > 0.05). Others are significantly 
different at p < 0.005; SD: Standard deviation
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and so are not capable of a suitable solution. In any case, 
the only relevant ions are Ag+ and F–, since calcium and 
phosphate are not expected to be inhibitory, and these 
are dealt with separately.

Amongst the large number of species of bacteria nor-
mally present in the oral flora, Streptococcus, Lactobacillus, 
and Actinomyces species have been reported to be 
associated with both dentin and root caries41-43 and to 
have been isolated from carious dentin using anaerobic 
techniques.44-46

Since NH4Cl had no AB effect at either concentration, 
it is clear that neither NH4

+ nor Cl– is AB as such, which 
was to be expected. Similar arguments show that none of 
Na+, Cl–, and NO3

– is AB, again as expected (gross osmotic 
effects excepted, although incidentally these results show 
that they are not significant here). NaF ([F–] = 17,000 ppm) 
was not AB; however, NH4F was only effective at high 
concentration ([F–] = 190,000 ppm). Taken together, this 
implies that F– is AB at high concentration. This was con-
firmed by the dilution series test of NH4F: cut-off points 
were 200 (L. acidophilus) and 100 mg/mL (Graph 1C). For 
the ADT of NH4F at 400 mg/mL, after 5 days of incuba-
tion all bacteria grew back into the former inhibition 

zone. This supports the concentration effect deduction 
as ion diffusion is continuous (in the absence of removal 
by binding or precipitation), while the indistinct edge 
of the inhibition zone indicates that F– is indeed a bacte-
rial inhibitor rather than bactericidal under the present 
circumstances, as indicated elsewhere.47

NH4F has not been widely used, presumably due to 
its toxicity and the pungency of the released NH3, and it 
has been little studied. Only Maltz and Emilson48 have 
investigated the susceptibility of oral bacteria to NH4F, 
along with NaF, SnF2, and CuF2, concluding that fluoride 
has an AB effect only at high concentration. They also 
remarked that, for SnF2 and CuF2, the metal ions seem 
to play a major role, with both of which observations the 
present results are consistent.

Comparing the low-concentration results for NaNO3 
and NaF, which showed no AB effect, with those for 
AgNO3 and AgF, which did, it is concluded that it is only 
the silver ions that are AB.

The weaker AB effect of SDF at high concentration 
compared with NH4F may be due to chloride in the agar 
precipitating silver ions.9 In addition, since there was no 
significant difference between the AB effects of AgF and 

Graphs 1A to C: Inhibition zone areas for the three test bacteria for the various test agents. Error bars: ±1 standard deviation 
“High” and “low” concentrations as in Table 1, “medium” = 200 mg mL–1 (A) S. mutans, (B) A. naeslundii, (C) L. acidophilus

A B

C
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SDF, it would appear that the ammonium group in SDF 
(i.e., from the dissolved NH3) makes no contribution. That 
both SDF and AgF had a significantly better effect than 
AgNO3 at high concentration might possibly be due to 
the modest AB effect of fluoride (as seen above for NH4F) 
being additive,49-51 but this needs checking. However, this 
would not apply at low concentration where silver ion 
appears as the only AB entity.

Thus, it is deduced that of the tested systems, the prin-
cipal AB entity is Ag+, although the AB efficacy of SDF, 
AgF, and AgNO3 was not identical for the three species 
tested, suggesting some variation in agent sensitivity 
(although the ion concentrations were not controlled here, 
the results are not directly related to those values—see 
Table 1 and Graph 1), and also between species.

The AB mechanism of fluoride has been investigated 
widely through studies of the inhibition of adhesion52 
and metabolism.53 Here, an effect was only seen at high 
concentration, consistent with the results of previous 
studies. Thus, Rickles and Becks54 found from pH and 
bacterial growth measurements that 2% NaF did not 
alter the acidogenic properties of the oral flora in col-
lected saliva, while Kilian et al55 reported no detectable 
difference in the flora of plaque samples from children 
exposed to high (21 ppm) and low (0.3 ppm) drinking 
water fluoride concentrations with which the present 
result is also consistent. However, from colony counting, 
250 µg/mL NaF (113 ppm F) has been reported to be 
the lowest concentration to inhibit streptococci but not 
Actinomycetaceae.56 For comparison, topical fluoride as 
a 1% NaF (4,500 ppm F) gel reduced the production of 
acetate and lactate in both noncancer and postirradia-
tion xerostomic cancer patients,57 while even 0.5 ppm 
fluoride depressed acid production.58 It would seem 
essential to distinguish carefully between an outright 
AB effect and metabolic modification, which has not 
always been done.

Although an AB effect for fluoride itself has been 
reported by some, its actual role or mechanism as an 
AB agent in the mouth, never clear,59 is now greatly in 
doubt,60 but in any case, this question now seems to be 
generally overshadowed by studies of de- and reminer-
alization. However, while the effectiveness of fluoride in 
remineralization has been debated,61 the current view is 
positive,62,63 albeit with no clear mechanism indicated. 
The critical point now is that the fluoride concentration 
needed for any AB effect in the ADT is plainly substan-
tially greater than that needed to affect the solubility of 
apatite, and it is necessary to distinguish between the two 
kinds of mechanism, even if the outcome—interference 
with the progress of the carious process—is apparently 
the same and desirable.

In summary, at low concentration, the AB effect of 
SDF is due only to silver ions. Fluoride inhibits bacteria 
at very high concentration ([F–] >= 97,000 ppm), but no 
effect was found at [F–] < 49,000 ppm, and especially, 
there is no clear cooperative or synergistic action with 
silver ions. NH4

+, Na+, Cl–, and NO3
– had no detectable 

AB effect. The effect of Ag+ in broth may be constrained 
by the chloride present.

These results must be put into the context of the 
biofilm of the oral environment. It is understood that 
agar-diffusion is only a screening test and that it cannot 
be used to determine the efficacy of a process in vivo. 
This arises simply because the biofilm itself has dif-
ferent properties, chemically and physically, while the 
community of organisms behaves differently to isolated 
species.64-66 This is well understood, and is the basis of the 
development of artificial mouth systems.64,65,67 However, 
in the present work, we are showing an absence of effect 
for fluoride (and other certain other chemical species) 
in a system that would be expected to show the greatest 
possible sensitivity. But, it is understood that the sensi-
tivity of the organisms in a monospecific culture cannot 
be less than that in a biofilm64,65. It follows then that the 
screening test can be no worse, and is probably rather 
more sensitive, for detecting the possibility of an effect. 
Obviously, were there to be one, then a biofilm test would 
be required to confirm and assess sensitivity. Thus, we 
can conclude that, simplistic though it may be, the ADT 
suggests now that an AB effect for clinically relevant 
concentrations of fluoride in the context of a biofilm is 
unlikely. Equally, in the case of silver (whose efficacy has, 
as far as we know, never been challenged) in the context 
of a biofilm, some lesser effect might be encountered 
and that such a system would need to be studied. A 
distinction also needs to be drawn between the general 
exposure of biofilms to fluoride through mouth rinses, 
APF and the like, and the precisely targeted treatment of 
caries with silver solutions. Nevertheless, the lethality of 
Ag+ should it contact the organism is confirmed, and this 
provides a good positive control for any more elaborate 
screening system.67

CONCLUSION

Consistent with the bulk of related observations and the 
expectations of the chemistry, it was concluded that it is 
silver ions that exert the principal AB effect in the com-
pounds studied, so that if ‘optimization’ of SDF or the like 
as an anticaries agent is to be pursued, it should be with 
regard to the AB effect of silver ions, the role of fluoride 
being complementary with respect to de- or remineraliza-
tion, but not AB at the relevant concentrations. However, 
these are in vitro results and this needs to be confirmed  
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in vivo or on more suitable tooth models. Further out-
comes should examine how to conduct more elaborate 
trials involving dilution methods and biofilms over dif-
ferent time periods ultimately leading to clinical trials.

CLINICAL SIGNIFICANCE

Silver compounds, such as SDF, silver fluoride, and silver 
nitrate have AB effect against cariogenic organisms and 
these may have clinical impact in arresting or prevent-
ing dental decay. Sodium fluoride did not have AB effect 
under the conditions tested.
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