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ABSTRACT
Atherosclerotic cardiovascular disease (ASCVD) continues to 
be the leading cause of death worldwide. Metabolic syndrome 
is associated with an increased risk of ASCVD. With the 
prevalence of metabolic syndrome continuing to increase, it 
is important to understand the relationship between these risk 
factors and development of ASCVD. Endothelial dysfunction 
(ED), an early, essential step in atherosclerotic plaque forma-
tion, is the key link. Here we review diagnostic methods of ED 
and the mechanisms of each metabolic syndrome component 
contributing to ED. Finally, the effects of current treatments of 
metabolic syndrome on ED will also be discussed.
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INTRODUCTION

Metabolic syndrome has been recognized as a combina-
tion of interrelated metabolic risk factors that directly 
promote atherosclerotic cardiovascular disease (ASCVD), 
with the key link between this syndrome and adverse 
cardiovascular events being endothelial dysfunction 
(ED). The Adult Treatment Panel (ATP) III criterion is the 
most commonly used definition: Central obesity (waist 
circumference ≥102 cm in men or ≥88 cm in women), 
hyperlipidemia (triglyceride level ≥150 mg/dL or high-
density lipoprotein [HDL]-cholesterol <40 mg/dL in men 
or <50 mg/dL in women), hypertension (blood pressure 
≥130/85 mm Hg), and impaired fasting glucose (fasting 
blood glucose >100 mg/dL). According to this criterion, 
approximately 24% of US adults were estimated to have 
three or more of the above in 2002.1

The predominant factors contributing to the metabolic 
syndrome are thought to be insulin resistance (IR)2 and 

central obesity.3,4 Indeed, several metabolic pathways have 
been implicated linking IR as a central driver for the other 
metabolic risk factors.5,6 Moreover, central obesity has been 
associated with accumulation of lipid in muscle and liver 
tissues, which on its own predisposes to hyperlipidemia 
and IR.7 The adipose tissue shows increased production 
of proinflammatory cytokines and other inflammatory 
markers, which lead to a state of low-grade inflamma-
tion,8,9 and those with the metabolic syndrome have 
been found to have elevated levels of proinflammatory 
cytokines [e.g., interleukin (IL)-6 and tumor necrosis factor 
alpha (TNF)-α and acute-phase proteins [e.g., C-reactive 
protein (CRP) and fibrinogen].10,11 In addition, the meta-
bolic syndrome predisposes to a prothrombotic state, due 
to elevated levels of procoagulation factors, such as plasmi-
nogen activator inhibitor-1, tissue factor, and fibrinogen.12 
These numerous, complex biochemical changes lead to ED 
and increased risk for subsequent ASCVD.13

ENDOTHELIAL DYSFUNCTION

The healthy endothelial cell layer serves an essential role 
in maintaining normal vascular homeostasis. In normal 
physiology, the endothelium produces several paracrine 
factors that regulate vascular tone, limit expression of 
proinflammatory molecules, inhibit platelet aggrega-
tion, promote fibrinolysis, and limit smooth muscle 
proliferation.14-16 Endothelial-derived nitric oxide (NO) 
is the principal driver of the vasodilatory process. It is 
generated by the conversion of L-arginine to L-citrulline 
through the action of endothelial NO synthase (eNOS) 
and its cofactor tetrahydrobiopterin (BH4).17 NO mole
cules vasodilate the local vascular smooth muscles by 
stimulating guanylyl cyclase and increasing production 
of cyclic guanosine monophosphate.17 In addition to its 
vasodilatory effects, NO also acts as a potent inhibitor 
of platelet aggregation and adhesion, interferes with 
leukocyte adhesion, and inhibits proliferation of vas-
cular smooth muscles.17-19 Disruption of these processes 
leads to ED, an early, essential step in the development 
of atherosclerosis.

endothelial dysfunction ASSESSMENT

Invasive Assessment

Coronary reactivity testing involves intra-arterial infu-
sions of endothelium-dependent vasodilators, such as 
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acetylcholine (ACh), bradykinin, or substance P. Acetyl-
choline activates the endothelial muscarinic receptors 
that metabolize L-arginine, stimulate NO synthase, 
and thus generate NO.20 In response to these infusions, 
coronary epicardial vessels dilate in the setting of normal 
or preserved endothelial function. In ED, ACh’s direct 
smooth muscle constrictor effects on epicardial vessels 
overcome the dilator effects of endothelium-dependent 
NO release.21

Noninvasive Assessment

Doppler echocardiography, positron emission tomo- 
graphy, and magnetic resonance imaging have been used 
to noninvasively assess either peripheral or coronary 
vasculature. Ultrasound-based measurement of brachial 
artery reactivity or flow-mediated vasodilation (FMD) is 
the most widely used technique: After a brief period of 
upper-arm occlusion using a blood pressure cuff, shear 
stress-mediated brachial arterial dilation is measured 
using a high-frequency ultrasound transducer.22 The 
FMD refers to the vasodilator response due to the shear-
mediated NO release of the brachial artery with the stim-
ulus being the ischemia after cuff deflation. Thus, FMD 
is used as a surrogate measure of endothelial function.

Associated Biomarkers

Biomarkers have been a subject of research interest 
for their potential for adding independent prognostic 
value, in addition to clinical risk factors. Markers of 
oxidative stress have been studied as a means to assess 
endothelial injury and dysfunction because reduction 
in NO bioavailability is often due to increased pro-
oxidant stress.

Glutathione maintains thiol groups of biomolecules 
in their reduced state and prevents peroxidation of mem-
brane lipids.23 Similarly, high cysteine levels are indicative 
of increased oxidative stress. Glutathione is also involved 
in transportation of NO.24 Our studies have found asso-
ciations between increased oxidative stress, measured as 
lower glutathione and/or higher cysteine levels and FMD, 
microvascular vasodilator function, arterial stiffness, and 
arterial thickness.25-30

Asymmetric dimethylarginine (ADMA) is a by-
product of L-arginine metabolism, i.e., elevated in patients 
with hypertension, dyslipidemia, and atherosclerosis.31-34 
The ADMA acts as a competitive inhibitor to eNOS, 
leading to decreased NO production and bioavailability.31 
Plasma ADMA levels correlate with ED32 and subclinical 
atherosclerosis.35

Following oxidative stress or apoptosis, microparti-
cles are shed from plasma membranes. Those originat-
ing from endothelial cells have been thought to impair 

endothelium-dependent dilation and the NO pathway. 
Circulating endothelium-derived microparticles were 
found to correspond to the severity of coronary artery 
disease in patients presenting with acute coronary syn-
dromes.32

METABOLIC SYNDROME AND MECHANISMS 
CONTRIBUTING TO Endothelial Dysfunction

Components of the metabolic syndrome—impaired 
glucose metabolism, obesity, dyslipidemia, and hyper-
tension—are all associated with ED. Endothelial vaso-
dilation is increasingly impaired with the number of 
components present from the metabolic syndrome.36 The 
mechanisms by which these risk factors affect endothe-
lial function are often interrelated and broadly fall into 
common pathways of endothelial injury, inflammation, 
reactive oxygen species (ROS) production, and disruption 
of NO function and bioavailability.

Abnormal Glucose Metabolism

Endothelial dysfunction is present even in the early 
stages of diabetes including impaired glucose tolerance 
and impaired fasting glucose.37 Insulin resistance is 
marked by hyperinsulinemia and hyperglycemia. Under 
normal conditions, insulin enhances the vasodilatory 
action of NO and increases its production. Endothe-
lial cells in the insulin-resistant population, however, 
display paradoxical vasoconstriction when exposed to 
insulin. The reasons for this are likely multifactorial. In 
patients with insulin-dependent diabetes mellitus, the 
serum insulin concentration is inversely correlated with 
endothelium-dependent vasodilation (EDV).38 Further-
more, insulin administration itself impairs endothelial 
function.39 However, this impairment can be reversed 
with the administration of antioxidant vitamin C. This 
suggests that hyperinsulinemia increases oxidative 
stress in the vasculature.39 Vascular oxidative stress and 
overproduction of ROS have a deleterious effect on eNOS 
activity and synthesis of NO. The ROS in insulin-resistant 
subjects enhance the oxidation of BH4 to 7,8-dihydro-
biopterin (BH2), limiting the amount of active cofactor 
available for eNOS function. The activity of dihydrop-
teridine reductase, an enzyme that regulates the rate 
of regeneration of BH4 from BH2, is reduced in IR and 
compounds on the problem with pteridine metabolism.40 
Finally, ROS directly inactivate NO, thereby decreasing 
its bioavailability.

Hyperglycemia produces ED by blunting EDV through 
an assortment of intracellular pathways. Hyperglycemia  
can lead to the depletion of nicotinamide adenine 
dinucleotide phosphate, which is essential to the regen-
eration of antioxidant molecules, such as glutathione, 
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tocopherol, and ascorbate.41 Accumulation of advanced 
glycosylation products formed in chronic hyperglycemia 
also inactivates NO, creating another avenue for ED.42 
Hyperglycemia also increases the synthesis of diacyl- 
glycerol, a key component to the initiation of the protein 
kinase C (PKC) pathway. Activation of the PKC pathway 
induces endothelial expression of endothelin-1, a potent 
vasoconstrictor, as well as decreases the level of eNOS 
production. The PKC additionally increases production 
of various growth factors and prothrombotic factors that 
alter the vascular remodeling process and predispose to 
thrombosis respectively.41 Endothelial cells exposed to 
hyperglycemic conditions also undergo apoptosis that 
leads to the loss of intimal integrity and detachment 
of endothelial cells. In certain cases, the endothelium 
does not detach as an entire cell, forming endothelial 
microparticles (EMPs) that have procoagulant activity.43 
This process of endothelial denudation normally leads to 
reparatory mechanisms to restore vascular integrity, such 
as through the mobilization of endothelial progenitor 
cells (EPCs). Diabetic patients display a decreased reserve 
of EPCs secondary to reduced mobilization from the bone 
marrow, stunted proliferation, and shortened survival.43

Interestingly, other studies have shown that the 
relationship between diabetes and ED may not be unidi-
rectional, but in fact, ED might precede the development 
of diabetes. A large prospective study of 121,700 women 
found that the elevated biomarkers of ED, E-selectin, and 
intercellular adhesion molecule-1 (ICAM-1) predicted 
incident diabetes.44 These support the experimental 
findings in mice with knockout mutations in the eNOS 
gene that also develop IR.45 Impaired endothelial per-
meability limits insulin delivery to the interstitium.46 
Furthermore, insulin delivery to metabolically active 
muscle tissue is thought to be diminished secondary 
to impaired endothelial vasodilation, limiting capillary 
recruitment and compromising microvascular distribu-
tion of skeletal muscle blood flow.47,48

Obesity

Obesity has been linked to impaired endothelium-
dependent peripheral and coronary vasodilation. The 
Framingham Heart Study examined this issue in a large 
community-based sample and found body mass index 
(BMI) to be inversely correlated with FMD.49 A similar 
association was found in the coronary circulation; obese 
patients with normal or mildly diseased coronary arteries 
demonstrated significantly attenuated coronary blood 
flow in comparison with normal-weight subjects with 
intracoronary ACh.50

Excess adipose tissue in obese patients creates 
a disease state characterized by chronic, low-grade  

systemic inflammation. Plasma inflammatory markers, 
such as CRP, IL-6, TNF-a, fibrinogen, angiotensinogen, 
and various cell adhesion molecules are uniformly 
elevated in obese individuals.15,51,52 Adipocytes function 
as a metabolically active organ, producing a number of 
proatherogenic and proinflammatory adipokines. Certain 
adipokines, such as adiponectin serve a protective role 
in endothelial function. Adiponectin stimulates NO pro-
duction and downregulates TNF-a-induced adhesion 
molecule expression by inhibiting nuclear factor kappa 
B (NF-κB).15 Obese individuals have reduced levels of 
adiponectin. Hypoadiponectinemia is predictably associ-
ated with impaired EDV.53 These stores can be restored 
with therapeutic lifestyle interventions and weight loss.54

Increased production of ROS has also been linked to 
obesity. Central obesity is tied to oxidative stress through 
an expanded supply of cytosolic triglycerides in non- 
adipose tissues, such as muscle, liver, and pancreatic beta 
cells. Cytosolic triglycerides are the source of the meta-
bolically active long-chain acyl-coenzyme A esters. These 
esters inhibit the translocation of adenine dinucleotide 
into the mitochondria, and the resulting intramitochon-
drial deficiency is a powerful stimulator of mitochondrial 
oxygen free radical production.55 Identical to mechanisms 
at play in IR, oxidative stress decreases NO bioavailability 
and neutralizes NO function. Endothelin-1 activity is 
increased in obese patients, and may further exacerbate 
abnormal vasomotor regulation by disrupting the NO 
and endothelin-1 balance.56

Dyslipidemia—Low HDL-C and 
Hypertriglyceridemia

High-density lipoprotein cholesterol works to reverse 
cholesterol transport and has a protective effect against 
the development of atherosclerosis. In contrast, decreased 
HDL-C has been associated with a number of mecha-
nisms that predispose to ED. Hyperlipidemic patients 
with a low HDL-C have higher levels of vascular cell 
adhesion molecule-1 (VCAM-1) and ICAM-1. These 
molecules mediate the adhesion of leukocytes to the 
endothelium and therefore, contribute to a proinflamma-
tory state.57 Low HDL-C is also associated with increased 
low-density lipoprotein cholesterol (LDL-C) oxidation 
and impaired FMD.58 The HDL-C has the ability to act as 
an antioxidant and has been shown to inhibit lipoprotein 
oxidation.59 The HDL-C contains antioxidant enzymes 
and proteins, including platelet-activating factor, acetyl-
hydrolase, and paraoxonase, which are able to counteract 
LDL-C oxidation.

Oxidized LDL-C induces the activation of NF-κB 
that ultimately stimulates endothelial cells to express 
monocyte-specific chemoattractants and cell adhesion 
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molecules.60 Oxidized LDL-C also directly decreases 
NO synthesis through early transcriptional inhibition 
and destabilization of posttranscriptional messenger 
ribonucleic acid.61 The proinflammatory signals are thus 
intertwined with the oxidative state, demonstrating the 
importance of HDL-C in protecting the endothelium 
from these processes.

The contribution of hypertriglyceridemia to ED 
remains controversial. In a study by Lundman et al,62 
young healthy men with mild-to-moderate hypertriglyc-
eridemia were found to have impaired FMD. Patients in 
this study also had increased levels of ADMA, an endo- 
genous eNOS inhibitor. Increased ADMA in hypertri-
glyceridemia consequently reduces the bioavailability of 
NO, offering one mechanism through which triglycerides 
can impair endothelial function.62 Elevated levels of the 
soluble forms of VCAM-1 and ICAM-1 were also found 
in subjects with hypertriglyceridemia who otherwise had 
no history of diabetes, hypertension, or other significant 
cardiovascular risk factors.63 Lewis et al64 found that 
endothelium-dependent relaxation mediated by ACh was 
diminished in patients with hypertriglyceridemia and 
normal LDL-C levels. A study by Chowienczyk et al,65 
in contrast, showed no impairment of the endothelium in 
patients with severe hypertriglyceridemia in the context 
of lipoprotein lipase dysfunction and normal LDL-C. 
This discrepancy may be attributed to lipoprotein lipase 
deficiency, which is associated with a selective increase 
in chylomicrons and large very low-density lipoproteins. 
By virtue of their size, these lipoproteins are unable to 
invade the vessel wall and initiate the process of athero-
genesis.63 Lewis et al64 hypothesized that in their study, 
the difference may have been due to the higher BMI of 
the test subjects compared with the controls, indicating 
that there may have been a confounding effect of IR that 
was not accounted for in their study.

Hypertension

Patients with essential hypertension have blunted 
responses to ACh-mediated endothelial vasodilation in 
both the peripheral and coronary vascular beds.66,67 When 
simultaneously exposed to ACh and NG-monomethyl-L-
arginine (L-NMMA), an inhibitor of the endothelial syn-
thesis of NO, hypertensive patients do not demonstrate 
a significant reduction in vasodilation compared with 
control patients.68 This phenomenon suggests impairment 
in NO bioactivity in hypertension. In hypertension, this 
impairment is largely attributable to NO breakdown and 
inactivation by ROS, as opposed to decreased endothelial 
NO synthesis. Intra-arterial administration of high-dose 
antioxidant vitamin C to patients with hypertension and 
impaired forearm blood flow can acutely reverse this 
defect, giving more credence to this theory.69 Vitamin C 

scavenges radical oxygen species allowing for NO activity, 
which then unmasks the effect of L-NMMA.69 In parallel 
to increased oxidative stress, dysfunctional endothelium 
in hypertensive patients is associated with increased 
endothelial-derived constricting factors (EDCFs). 
These factors include endothelin-1, angiotensin II,  
and cyclooxygenase-derived products, such as throm-
boxane A2 and prostaglandin H2. The EDCFs cause 
vasoconstriction, further contributing to ED.70

Metabolic Syndrome

Metabolic syndrome encompasses the aforementioned 
conditions of hypertension, IR, dyslipidemia, and obesity. 
Many of these conditions coexist with one another, 
leading to a complex array of inflammation, NO inactiva-
tion and depletion, oxidative stress, and prothrombotic 
states. The Prospective Investigation of the Vasculature in 
Uppsala Seniors (PIVUS) study evaluated 1,016 subjects 
aged 70 years and measured EDV after intra-arterial ACh 
infusion. This study found that patients with metabolic 
syndrome (per National Cholesterol Education Program/
ATP III criteria) had EDV that was progressively more 
impaired with the increasing number of criteria met for 
metabolic syndrome. When the criteria were analyzed 
separately and in multiple regression analysis, abdomi-
nal obesity was most closely related to EDV.36 Of course, 
abdominal obesity is commonly a comorbid condition to 
the other criteria, and so it is important to recognize that 
multiple mechanisms are working together additively, if 
not synergistically in metabolic syndrome to result in ED.

TREATMENT OF METABOLIC SYNDROME AND 
ITS EFFECTS ON Endothelial Dysfunction

Lifestyle Modifications

Lifestyle modifications, comprising of diet, exercise, and 
tobacco cessation, are the first-line intervention for meta-
bolic syndrome. Weight reduction and maintenance of a 
lower weight should be the first priority.71 The American 
Diabetes Association recommends the Mediterranean 
diet, promoting high consumption of whole-grain foods, 
fruits, and vegetables for their beneficial effects on gly-
cemic control and cardiovascular risk factors.72 In the 
PREDIMED trial, 3,541 patients without diabetes at high 
cardiovascular risk were assigned to one of two Mediter-
ranean diets, supplemented with either free virgin olive 
oil or nuts. Those assigned to the Mediterranean diets 
had lower risk of diabetes compared with the low-fat 
control diet.73

A randomized trial studied the effects of a Medi-
terranean-style diet on ED in patients with metabolic 
syndrome with a follow-up of 2 years.74 The ED was 
measured by platelet aggregation response to adenosine 
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after applying a blood pressure cuff and administer-
ing L-arginine. Those assigned to the Mediterranean 
diet had an improved endothelial function score, but it 
remained unchanged in the control group. Marin et al75 
also conducted a smaller trial in 20 elderly subjects and 
assessed the effects of dietary fat on the release of EMPs 
and EPCs. The Mediterranean diet led to a lower EMP 
and higher EPC levels. Furthermore, they also found 
lower urinary isoprostane concentrations after consump-
tion of a Mediterranean diet, signifying improvement in 
oxidative stress.

The American Heart Association (AHA) and  
American College of Sports Medicine recommend at  
least 30 minutes of moderate-intensity physical activity 
for at least 5 days of the week, or 20 minutes of vigorous 
aerobic exercise 3 days a week, or a combination of the 
two,76 and for those with metabolic syndrome, regular 
exercise is crucial.71 In healthy males, regular aerobic 
exercise for 3 months resulted in a 30% increase in 
ACh-mediated vasodilation.77 These beneficial effects of 
physical activity on endothelial function were also found 
in those with chronic heart failure78 and in those with 
cardiovascular risk factors.79 Exercise has been shown 
to improve endothelial function, independently of its 
reduction in cardiovascular risk factors79—although 
exercise training significantly improved FMD, plasma 
lipids, blood pressure, blood glucose, waist-to-hip ratio, 
or BMI were unchanged after 8 weeks in patients under-
lying vascular dysfunction. Furthermore, aerobic inter-
val training was found to be more effective in improving 
ED, compared with continuous moderate exercise (9% 
vs 5%; p < 0.001) in 32 metabolic syndrome patients, 
suggesting that exercise intensity is an important factor 
for improving cardiorespiratory fitness and reversing 
cardiovascular risk factors.80

Smoking is a well-known and most important modifi-
able risk factor for ASCVD and has been associated with 
ED in asymptomatic young adults without any other risk 
factors.81 The proposed mechanisms are thought to be 
secondary to smoking increasing adherence of platelets 
and macrophages to the vessel wall, developing a proco-
agulant and inflammatory environment.82 Smoking ces-
sation, for only 2 weeks, has been found to reduce platelet 
aggregations, and thus, decrease oxidative stress.83 A 
study of 1,504 current smokers found that after 1 year of 
cessation, FMD improved despite weight gain, while in 
those who did not quit, FMD did not change.84

Insulin Sensitizers

Metformin is a biguanide that reduces IR without directly 
affecting insulin secretion and causes weight loss.85 Met-
formin reduces the incidence of metabolic syndrome by 
17% compared with placebo.86 Patients with metabolic 

syndrome who received metformin showed significant 
improvement in EDV compared with placebo.87 Subjects 
with type II diabetes managed with diet but without 
metabolic syndrome had improvement in ACh-stimulated 
vasodilation in addition to IR.88 Potential mechanisms for 
metformin’s effect include the improvement in IR, antioxi-
dant effects, and its effects on lipids and free fatty acids.89

Troglitazone, an activator of peroxisome proliferator 
activator receptor a, improved IR and controlled diabe-
tes. Patients treated with troglitazone for 12 weeks had 
improved FMD, which strongly correlated with improved 
fasting insulin levels.90 Rosiglitazone also improved ED 
after 12 weeks in patients with type II diabetes, an effect 
attributed to increase in NO.91

Statins

The recent 2013 American College of Cardiology (ACC)/
AHA guidelines recommend statin therapy for primary 
prevention in patients with diabetes between the ages of 
40 and 75 years, with calculated 10-year ASCVD risk of 
7.5% or higher, with LDL cholesterol levels of 190 mg/dL 
or higher, and those with cardiovascular disease.92 The 
evidence for statins’ widespread use for primary ASCVD 
prevention, and specifically its benefits on ED, dates 
back to the 1990s. Six months of lovastatin dose 40 mg 
twice-daily therapy significantly improved endothelium-
mediated responses in 23 patients with atherosclerosis.93

The effects of statins on ED were then found to occur 
earlier than 6 months in subsequent studies. Six weeks of 
40 mg of daily pravastatin increased FMD in patients with 
acute coronary syndrome, when compared with placebo, 
in the Reduction of Cholesterol in Ischemia and Function 
of the Endothelium (RECIFE) trial.94 Another study found 
a significant increase in FMD in hypercholesterolemic, 
postmenopausal women receiving atorvastatin as early 
as 2 weeks.95

Interestingly, the RECIFE trial did not find any correla-
tions between the changes in FMD and decreases in total 
and LDL cholesterol,94 suggesting another mechanism 
of ED improvement other than lipid lowering. Indeed, 
statins have been shown to increase the bioavailability of 
NO: Patients with both normal and high levels of choles-
terol had significant improvement in EDV after L-NMMA 
was administered and blocked statin therapy.96,97 Statins 
may also reduce leukocyte adhesion and thus improve 
endothelial function by reducing circulating levels of 
adhesion molecules P-selectin and ICAM-1.98

CONCLUSION

The vascular endothelium serves as a modulator of 
vascular disease, and ED is a critical early step in the 
development of atherosclerosis. The components of 
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metabolic syndrome render patients more susceptible 
to ASCVD as their endothelial function is disrupted by 
inflammation, oxidative stress, and biomechanical stress. 
This is a promising study population to identify poten-
tial biomarkers or other modes of endothelial function 
assessment to ultimately better risk-stratify patients who 
are likely to develop ASCVD and sustain major cardio-
vascular events. Prospective trials are needed to assess 
the prognostic value of risk assessment in these patients. 
Furthermore, novel, primary preventive interventions 
could be developed targeting this early stage of athero-
sclerosis to decrease the ASCVD burden that continues 
its devastation worldwide.
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